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ABSTRACT
Data uncertainty arises in many situations. A common approach
to query processing uncertain data is to sample many “possible
worlds” from the uncertain data and to run queries against the pos-
sible worlds. However, sampling is not a trivial task, as a randomly
sampled possible world may not satisfy known constraints imposed
on the data. In this paper, we focus on an important category of
constraints, the aggregate constraints. An aggregate constraint is
placed on a set of records instead of on a single record, and a real-
life system usually has a large number of aggregate constraints. It
is a challenging task to find qualified possible worlds in this sce-
nario, since tuple by tuple sampling is extremely inefficient be-
cause it rarely leads to a qualified possible world. In this paper, we
introduce two approaches for querying uncertain data with aggre-
gate constraints: constraint aware sampling and MCMC sampling.
Our experiments show that the new approaches lead to high quality
query results with reasonable cost.

Categories and Subject Descriptors
H.2.4 [DATABASE MANAGEMENT]: Systems

General Terms
Algorithms, Performance
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1. INTRODUCTION
Probabilistic data appear in numerous applications, including in-

formation extraction [19, 20, 32], graph anlytics [15, 22], track and
trace [7, 13], data cleaning [6, 7], etc. In this paper, we study the
problem of query processing against uncertain data where the data
is subject to global constraints, or aggregate constraints.

Assume a dataset has an attribute with uncertain values. For each
tuple, we use a probability mass function (pmf), which means it
∗Work done while the author was at Microsoft Research Asia.
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has value xi with probability pi, to describe its uncertainty. As a
toy example, imagine a company running multiple advertisement
campaigns to increase its sales. Table 1 shows estimated sales
increase resulting from web, TV, and newspaper advertisements.
The values in the Sales Increase column are uncertain. The pmf
{2/0.3, 4/0.7} means that the sales increase is 2 million with prob-
ability 0.3, and 4 million with probability 0.7.

ID Ad Campaign ... Sales Increase (million $)
1 Web ... {2/0.3, 4/0.7}
2 TV ... {3/0.2, 5/0.8}
3 Newspaper ... {1/1.0}

Table 1: A dataset D with uncertain values.

Possible World W Pr[W ]
{(Web, 2), (TV, 3), (Newspaper, 1)} 0.3 ∗ 0.2 ∗ 1 = 0.06
{(Web, 2), (TV, 5), (Newspaper, 1)} 0.3 ∗ 0.8 ∗ 1 = 0.24
{(Web, 4), (TV, 3), (Newspaper, 1)} 0.7 ∗ 0.2 ∗ 1 = 0.14
{(Web, 4), (TV, 5), (Newspaper, 1)} 0.7 ∗ 0.8 ∗ 1 = 0.56

Table 2: Possible worlds.

Clearly, in this toy example, as in many real life applications, the
joint distribution of the entire data is not available. We can instan-
tiate a possible world by drawing a value from the pmf associated
with each tuple. Table 2 illustrates the possible worlds of the uncer-
tain sales data, where Pr[W ] is the probability of the corresponding
possible world W .

With possible worlds, we can answer queries against the uncer-
tain data. For example, to answer the query, “How likely are TV ads
more effective than Web ads?”, we find possible worlds from Ta-
ble 2 where the sales increase from TV ads is larger than that from
Web ads, and we add up their probabilities, 0.06 + 0.24 + 0.56 =
0.86. Consequently, the answer is 86%. Since the entire set of pos-
sible worlds is often huge (which we will quantify later), a common
practice is to sample the possible worlds and answer the queries
from the sampled data.

1.1 Constraints
The pmf associated with each tuple reflects that our belief, or

prior knowledge, about the data is uncertain. When deriving the
possible worlds in Table 2, we assume that tuples in the dataset are
not correlated.

This allows us to draw values from a tuple’s pmf in a way in-
dependent of other tuples, and, hence, we are able to instantiate
possible worlds at a low cost. Additional information may change



our belief and the pmf. In particular, the independence assumption
may no longer hold, making sampling much more difficult.

Specifically, although uncertainty is associated with each indi-
vidual record, there exist global statistics or constraints about the
entire dataset in many systems [6, 27]. Here are two examples:

• A company is running a series of advertisement campaigns
to increase sales. It is known that, after all the campaigns,
sales increase by a total amount between $8 and $9 million,
but the amount contributed by each campaign is uncertain.

• Assume RFID-based sensors are used at highway entrances
and exits for track and trace. It is known that the total number
of trucks that have passed a certain toll gate is between 180
and 200, but traces of individual trucks (which entrances and
exits they use) are uncertain.

These global statistics are called aggregate constraints. They
occur frequently in real life applications, and they introduce corre-
lations among records. As a result, the cost of instantiating possible
worlds from uncertain data may increase dramatically.

1.2 Challenges and Observations
When the number of possible worlds is huge and the constraints

are numerous and hard to satisfy, looking for qualified possible
worlds may become as hard as finding a needle in a haystack. To
illustrate this, assume each tuple has k possible values. Thus, the
total number of possible worlds is kn, where n is the number of tu-
ples in the uncertain dataset. For example, if k = 3 and n = 1M ,
then there are 31,000,000 > 10477,121 possible worlds. We further
assume that the constraints actually disqualify 99.9999% possible
worlds, out of the total 10477,121 possible worlds.

In fact, the problem is known to be #P-hard [23]. Next, we illus-
trate two observations that are important for designing an efficient
sampling strategy.

1.2.1 Constraint Aware Sampling is More Efficient
When no aggregate constraint is present, one can sample each

tuple based on its pmf, independent of other tuples. However it
is not difficult to see why aggregate constraints make independent
sampling extremely inefficient. Given a constraint, if we instantiate
tuples one by one, there is no way to know if the resulting dataset
satisfies the constraint until we instantiate the last few tuples. Fur-
thermore, when a set of tuples are influenced by more than one
constraint, it is even more difficult for a randomly sampled possi-
ble world to be a valid possible world. Thus, in order to reduce
the rejection rate, one may want to change the pmf according to
which we are drawing the values for each tuple. In other words, we
want to modify the pmf’s in such a way that they become constraint
aware, i.e., sampling from the new pmf’s will result in a possible
world that is more likely to satisfy the aggregate constraints.

1.2.2 Valid Possible Worlds Tend to Cluster Together
Figure 1 illustrates the entire sampling space. Here, each point

in the space represents a possible world. In this setting, a random
point only has 0.000001 (one out of a million) chance of being a
valid possible world.

One possible approach is to adopt a method used in constraint
satisfaction problems; that is, given a random point in the space, to
find a path that efficiently leads to a nearby valid point. As we will
show later, traditional constraint satisfaction approaches have high
complexity and cannot handle problems in our scale. Furthermore,
even if the constraints disqualify 99.9999% of the possible worlds,
there are still more than 10477,121 · 10−6 = 10477,115 valid ones.
To create even a very small sample set, we need to repeat the above
process a large number of times, which is extremely costly.

One important observation which we make is that valid samples
tend to cluster together, which means, given a possible world X
that satisfies all the constraints, a possible world Y that is very
“similar” to X is very likely to satisfy the constraints as well. In
fact, we can “construct” such a Y from a given X . First, pick a
tuple from the dataset, if the tuple is not involved in any constraint,
then randomly change its value; otherwise, change its value such
that the constraints are still satisfied1. The resulting possible world
Y is also valid.

For this reason, Figure 1 depicts valid possible worlds as clus-
tered “islands”. Figure 2 zooms in on an island and shows the
sampling strategy. Based on observation, when A is the current
qualified possible world, one should sample around A for the next
qualified possible world. This may give B or C, and we reject B
immediately because it is off the island (unqualified), and we accept
C based on a certain strategy such that the resulting set of possible
worlds constitutes an unbiased sample.

1.3 Our Approaches
In this paper, we propose two approaches, constraint aware sam-

pling and Markov Chain Monte Carlo sampling, in order to find
valid possible worlds.

1.3.1 Constraint Aware Sampling method
Drawing values directly from the pmf associated with each tu-

ple is unlikely to produce valid possible worlds, since the drawing
ignores the constraints. In this approach, based on the constraints,
we modify each pmf such that drawing values from the modified
pmf’s are likelier to produce valid possible worlds. We essentially
convert the original constraint satisfaction problem into a quadratic
programming (QP) problem. We then solve the quadratic program-
ming problem to get the biased probability distribution.

1.3.2 Markov Chain Monte Carlo (MCMC) method
We employ a Monte Carlo method to find possible worlds of high

probabilities and this method has two phases. In the first phase, we
utilize a greedy constraint satisfaction approach to find some initial
valid possible worlds. The approach uses a voting algorithm to
determine the direction of value change (downward or upward) for
each variable. In the second phase, we perform a Monte Carlo walk
on a Markov chain that starts with the first valid assignment and
ends when enough samples are acquired. This method performs
significantly better than both the constraint aware sampling method
and naive sampling method.

1This is often possible because an aggregate constraint usually has
a valid range, for example, when sales increase is between $8 to $9
million. A change in a single tuple’s value usually will not make it
go out of the range.

Figure 1: Global search: find islands.
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Figure 2: Local search: sample on each island.

1.4 Paper Organization
The rest of the paper is organized as follows: Section 2 intro-

duces background knowledge of this work and compares our work
with related work. Section 3 presents the problem definition and an
overview of our approach. In Section 4, we present our constraint
aware sampling approach for querying against uncertain data. In
Section 5, we propose a more efficient MCMC based approach.
Section 6 reports experimental results. We conclude this research
in Section 7.

2. RELATED WORK

2.1 Sampling Based Data Management
Many systems have been developed to manage data with uncer-

tainty. The usual approach to address uncertainty is to augment the
classical relational model with tuple-level probability values [1, 2,
4, 8, 9]. In the independent tuples model [3], an uncertain relation
is a collection of tuples. Each tuple is comprised of one or more
mutually-exclusive alternatives and associated with a probabilistic
mass function. In other words, for a single tuple, if

∑
is the sum

of the weights or probabilities of all the alternatives of the tuple,
then

∑
= 1. Besides, a possible world of an uncertain relation is a

regular relation generated by selecting one and only one alternative
from each tuple. Therefore, the total number of possible worlds of
an uncertain relation is the product of the number of alternatives in
every tuple. Correspondingly, each possible world has an associ-
ated probability, which is the product of the probabilities of all the
selected alternatives.

In the above approaches, both the uncertainty representation as
well as the the data model that determine the uncertainty are fixed.
In other words, evidence derived from new incoming data will not
be able to alter existing beliefs. Then, in order to incorporate this
new evidence, the existing model, that is the entire uncertainty in-
formation “hard wired” with the data content, must be changed [14].
In many cases, the logical and physical database designs are in-
ferred from the existing probabilistic uncertainty model, which means
the entire system must be overhauled.

A more general approach based on sampling is proposed for
managing incomplete and uncertain data [7, 14, 31]. The idea is
simple and intuitive: we construct random samples while observing
the prior statistical knowledge and constraints about the data. Thus,
each sample is one possible realization (possible world) in the space
of uncertainty, and the entire set of samples reveals the distribution
of the uncertain data which we want to model. Queries and infer-
ences are then conducted against this distribution. MCDB [14], for
example, allows a user to define arbitrary variable generation func-
tions that embody the database uncertainty. MCDB then employs
these functions to pseudorandomly generate realized values for the
uncertain attributes and evaluates queries over the realized values.

One obstacle of applying the sampling approach for managing

uncertain and incomplete data is its efficiency. Indeed, with naive
sampling (sampling randomly and rejecting a sample if it does not
conform with existing statical knowledge or constraints), when the
distribution it samples from is complicated, it can be extremely in-
efficient since a majority of the samples will be rejected. How-
ever, advanced sampling techniques, such as sequential importance
sampling (SIS), Markov Chain Monte Carlo (MCMC) sampling,
which endeavor to sample from regions of high probabilities, can be
used to dramatically improve the performance of sampling. For in-
stance, Chen et al. [7] employ the Metropolis-Hastings sampling to
approximate the joint distribution efficiently for subsequent query
processing.

2.2 Incorporating Aggregate Constraints
How would additional evidences affect the distribution of pos-

sible worlds in an uncertain database and change the results of
queries over that database? Koch et al. [17] investigate this problem
and name it conditioning. In conditioning, possible worlds that do
not satisfy the given constraints are deleted and queries are evalu-
ated over the remaining possible worlds only. Generally, with con-
ditioning, we incorporate evidences in the form of constraints into
the system, and refine a prior probabilistic database to a posterior
probabilistic database. For example, in data cleansing techniques,
we usually first have an uncertain dataset and then need to clean it
(i.e., reduce uncertainty) by applying newly discovered knowledge.

Unfortunately, past research efforts on conditioning only focus
on imposing functional dependencies in an uncertain database. How-
ever, for a set of data, a lot of information or evidence about the data
exist in the form of aggregate constraints. For example, statistics
about the data may be published by a third party and such statistics
are nothing more than aggregates.

The benefit of leveraging aggregate constraints in reducing data
uncertainty has been shown in recent research [5, 28]. In [5], the
deduplication accuracy is improved significantly by incorporating
aggregate constraints while [28] exploits domain constraints to en-
hance the quality of matching entities. However, their approaches
only focus on the problem of entity matching and, due to efficiency
issues, do not scale well in our scenario where the number of ag-
gregate constraints may be very large and the number of involved
variables (entities) can be extremely huge.

Besides, Ré et al. [23] investigates how to evaluate positive con-
junctive queries with predicate aggregates (i.e., HAVING queries)
on probabilistic databases. However, for each HAVING query in
their research problem, there is at most one aggregate constraint
(HAVING predicate) imposed on the dataset.

In this paper, we focus on a more general problem: how to sam-
ple efficiently from large-scale uncertain databases with tremen-
dous variables, given an enormous number of aggregate constraints
(up to 1 million variables and 10K aggregate constraints are in-
volved in our experiments).

2.3 The Constraint Satisfaction Problems
In this subsection we discuss constraint satisfaction problems

(CSP), which can be regarded as our problem in a much smaller
scale. Tsang details on this problem and lays out a solution frame-
work using search techniques like constraint propagation and local
search [30]. Constraint propagation techniques infer that certain
values cannot be part of certain variable domains any more because
they violate the given constraints. The constraint propagation al-
gorithm works as follows: when a variable X changes its value,
the algorithm recomputes the possible domain expression of each
variable Y dependent on X . Afterwards, the algorithm generates
a new value for Y . If this newly assigned value is different from



the previous one, the algorithm will recompute the values for fur-
ther downstream variables. This process continues recursively until
there are no more changes of values in the network. The constraint
propagation techniques can fully solve the constraint satisfaction
problem. However, they are rarely used due to efficiency issues.

Local search methods work by iteratively changing the values
of a small number of variables in order to increase the number of
satisfied constraints. Particularly, for the binary CSPs (also called
the Boolean satisfiability problems or SAT), wherein the constraint
is represented in the conjunctive normal form (CNF), Selman et
al. [24, 25, 26] propose local search strategies GSAT and Walk-
Sat to find satisfying assignments. The general algorithm starts by
assigning a random value to each variable. If the assignment sat-
isfies all clauses of the CNF, the algorithm terminates. Otherwise,
it selects a certain boolean variable and flips it (changes its value).
Specifically, GSAT flips the boolean variable that minimizes the
number of unsatisfied clauses while WalkSAT makes flips by first
randomly picking a clause that is not satisfied by the current as-
signment and then picking a variable within that clause to flip. The
algorithm may restart with a new random assignment if no solution
has been found for too long as a way of getting out from local min-
ima of numbers of unsatisfied clauses [24]. In addition, Spears [29]
proposes a simulated annealing algorithm (SASAT) to solve SAT
problems. However, all the aforementioned local search methods
work only for the Boolean satisfiability problems (SAT) and, con-
sequently, cannot be applied to our research problem, where each
variable (tuple) in our uncertain database can have multiple possi-
ble values (alternatives).

Kitchen and Kuehlmann [16] describe a MCMC based algorithm
for sampling solutions to mixed boolean and finite domain CSPs.
Their algorithm starts from a random assignment and then performs
a Metropolis-Hastings move to a neighboring assignment. The
Metropolis-Hastings algorithm generates a random walk using a
proposal density and a method for rejecting proposed moves. If the
assignment is valid, the algorithm terminates; otherwise it loops to
conduct either a local search move or a Metropolis-Hastings move
until the assignment is valid. However, their approach assumes
that the CPSs have a large solution space and are relatively easy to
satisfy. On the contrary, the research in [12] provides a dynamic
programming-based solution for determining the number of solu-
tions of finite domain CSPs by utilizing XOR constraints. Unfortu-
nately, it suffers from extreme inefficiency in our research problem
because dynamic programming works poorly when coping with a
huge number of variables and constraints.

3. PROBLEM DEFINITION
In this section, we formally describe the problem which we plan

to solve. Furthermore, we introduce methods to partition the set of
constraints to reduce the complexity of the problem.

3.1 Problem Statement
Given a dataset D of uncertain values, we represent an aggregate

constraint c in the following form:

c = {S, t, a, b}
where S ⊆ D is the subset of data that the aggregate constraint is
imposed on, t is the type of aggregate, and a and b are the minimal
and maximum bound of the constraint. The most frequently used
aggregates are the five standard database aggregates: count, sum,
max, min, and avg2. For instance, let S be the set of promotional
2At first look, min and max do not seem to be aggregate constraints
as they can be simply applied for each tuple. However, if we have

campaigns. Constraint c = {S, sum, 10, 11}, or equivalently:

10 ≤
∑
d∈S

d.contribution ≤ 11

This means the total campaign benefit to sales is between 10 and
11 million. In the rest of this paper, we focus on the sum constraint.
Solutions to the other four types of constraints count, max, min, avg
are similar.

Thus, the problem can be stated as follows. Given a dataset D of
uncertain values and a set of constraints C = {c1, c2, · · · , ck}, we
want to answer database queries against D under constraints C.

3.2 Problem Decomposition
Let Sd denote tuple d’s correlated set, which includes tuple d

and any tuple that shares one or more constraints with d:

Sd = {x|∃c,x ∈ c.S,d ∈ c.S} ∪ {d}
Clearly, if tuple d is not covered by any constraint, then Sd = {d}.
On the other hand, if d is covered by a constraint that is imposed
on the entire dataset, then Sd = {d1, · · · , dn}. In other words,
{d} ⊆ Sd ⊆ {d1, · · · , dn}.

A constraint is applied to a set of tuples in the database. Given
a constraint, we denote the set of the tuples it applies to as its cov-
erage, or its domain. We want to partition the constraints into dis-
joint subsets such that constraints with overlapping coverage are in
the same subset. Then, the problem of finding valid possible worlds
in the entire search space is decomposed into a set of independent
problems of finding possible worlds in much smaller search spaces.

As an example, assume the database contains 6 tuples {X1,· · · ,X6},
and there are two constraints in total.{

6 ≤ X1 +X2 +X3 ≤ 10
6 ≤ X4 +X5 +X6 ≤ 10

Since their domains do not overlap, we can easily divide the prob-
lem into two sub-problems:

Data : {X1, X2, X3}
Constraint : {6 ≤ X1 +X2 +X3 ≤ 10}

and

Data : {X4, X5, X6}
Constraint : {6 ≤ X4 +X5 +X6 ≤ 10}

The original problem can be solved by solving the two sub-
problems and merging their results.

This divide-and-conquer approach corresponds to finding con-
nected components in a graph. Define a graph G, where vertexes
are the tuples in the database. If tuple x and y are involved in the
same constraints, we create an edge between x and y. Then, we
decompose G into connected components G1, G2, · · · , Gc. Fi-
nally, we solve the optimization problem in each component and
then merge their results.

4. CONSTRAINT AWARE SAMPLING
In this section, we introduce our constraint aware sampling ap-

proach for query processing against uncertain data.

a constraint
c = {S,min, 10, 20}

which means the minimum value is in the range of [10,20]. We
cannot simply revise the pmf of all involved tuples by removing
possible values smaller than 10, because we need to make sure that
at least one tuple has a value in the range of [10, 20].



4.1 Overview
For each tuple, instead of drawing uncertain values from its orig-

inal pmf, we create a trial distribution based on the pmf and the
aggregate constraints so that the final possible worlds created by
drawing tuples from the trial distribution are more likely to satisfy
the constraints.

The approach we use falls in the category of importance sam-
pling in statistics. The idea suggests that when sampling, one should
focus on the region(s) of “importance” which in our case, means
regions that are more likely to satisfy the constraints, so as to save
computational resource. However, the samples obtained from the
trial distribution may very likely be biased. To correct the bias, we
give each sample an importance weight, which is equal to the ratio
between the probability of the sample in the original distribution
and the probability of the sample in the trial distribution.

4.2 Satisfiability of a Constraint
Consider a constraint l ≤ S ≤ u, where S is a sum aggregate,

S = X1 + · · · + Xk, and we sample X1, · · · , Xk directly from
their original distributions. We show that the difference between
the center of the constraint ( l+u

2
) and the expected value of S affect

the constraint’s satisfiability.
For example, consider a constraint 5 ≤ S ≤ 7. We can calculate

the expected value of S. Assume E(S) = X1 + · · · + Xk = 8.
The upper bound (ub) of the constraint is smaller than the expected
value (7 < 8). Clearly, if one assumes that S follows a Gaussian
distribution, then more than half of the samples will have S > 7,
making these samples invalid.

In order to improve sampling efficiency, we can manipulate each
pmf so that the constraint is easier to satisfy. In our case, where the
center of the constraint is smaller than the expected value of the ag-
gregate, we will oversample the lower value end and under-sample
the higher value end of the pmf of each Xi. Clearly, the expected
value of S for X1, · · · , Xk sampled this way will be smaller than
its original expectation 8. However, the resulting distribution may
not be the same as the original distribution. We will then correct
the bias introduced by the new distribution by giving each sample
a weight.

When there are multiple constraints, optimizing for one may
make others more difficult to satisfy. In the rest of section, we first
consider the case of single constraint, then extend it to the scenario
with multiple constraints.

4.3 The Single Constraint Case
Let l ≤ X1+· · ·+Xk ≤ u be the constraint, and let {xi,1/pi,1,

· · · , xi,mi/pi,mi} be the pmf of Xi. We first introduce a bias in
sampling: instead of sampling xi,j with probability pi,j , we sample
it with probability wi,j · pi,j , where wi,j is the bias.

First, in order for the new probability distribution to be a valid
distribution, the biases must satisfy

mi∑
j=1

wi,j · pi,j = 1 (1)

and

wi,j > 0 (2)

With the biases, the expected value of Xi will be shifted from
Xi to wiXi, that is:

mi∑
j=1

(wi,j · pi,j)xi,j = wiXi (3)

The goal of introducing the bias is to increase the satisfiability

of the constraint. A constraint is easier to satisfy if the expected
value of the sum is as close to the center of the constraint interval as
possible, that is, we want to minimize |w1X1+· · ·+wkXk− l+u

2
|,

or equivalently [
2(w1X1 + · · ·+ wkXk)

l + u
− 1

]2
(4)

In order to formulate it as an optimization problem, we must
characterize wi,j . As a regularizer, we adopt a simple bias – the
linear bias – for wi,j , i.e., we prescribe that wi,j is a linear function
of xi,j :

wi,j = ai + bixi,j ai, bi are parameters (5)

Combining (1)(3)(5) we have⎧⎪⎨
⎪⎩

ai =
∑mi

j=1 pi,jx
2
i,j−wiX

2
i

∑mi
j=1

pi,jx
2
i,j

−X
2
i

bi = (wi−1)Xi
∑mi

j=1 pi,jx
2
i,j−X

2
i

(6)

Furthermore, combining (2) and (6), we obtain the following
bound for wi (see Subsection 4.6 for details):

max
j

xi,jXi −
mi∑
j=1

pi,jx
2
i,j

Xi(max
j

xi,j −Xi)
< wi <

min
j

xi,jXi −
mi∑
j=1

pi,jx
2
i,j

Xi(min
j

xi,j −Xi)

or

l(wi) < wi < u(wi) (7)

Combing (4) (7) and the original constraint, we convert the bi-
ased sampling problem to an optimization problem:

minimize
[
2(w1X1 + · · ·+ wkXk)

l + u
− 1

]2

subject to l ≤ w1X1 + · · ·+ wkXk ≤ u and
l(wi) < wi < u(wi) i = 1, · · · , k (8)

This is a quadratic programming (QP) problem (see Subsection 4.5).
After solving wi’s, we derive ai’s and bi’s according to (6). Then
we determine each individual wij using (5). Finally, we draw sam-
ples from the biased pmf {xi,1/wi,1pi,1 · · · , xi,mi/wi,mipi,mi}
to obtain possible worlds that are more likely to satisfy the con-
straint.

4.4 Bias Correction
The possible worlds are obtained by drawing values for each of

its tuples using a distribution different from the original distribu-
tion. This introduces a bias, which, according to the theory of
importance sampling, can be corrected by assigning each possible
world an importance weight.

Specifically, let W = {X1, · · · , Xk} be a possible world. Let
π(W ) be the probability of W based on the original distribution,
and let g(W ) be the probability of W based on the trial distribution.
Then, the importance weight of W is

w(W ) = π(W )/g(W ) (9)

Since π(W ) and g(W ) can be calculated as the product of the
probabilities of Xi’s, the importance weight of W in (9) comes
to w(W ) =

∏k
i=1 1/wi,i′ , assuming Xi = i′.

Finally, after obtaining a set of possible worlds, {W1, · · · ,Wn},
we can use them to answer any query. As an example, let q(W ) be
the (numerical) result of asking query q in possible world W , the
final, unbiased result is then [w(W1)q(W1)+ · · ·+w(Wn)q(Wn)]
/[w(W1) + · · ·+ w(Wn)].



4.5 The Multiple Constraints Case
A tuple may be involved in two constraints that wish to impose

conflicting sampling biases on the tuple. Thus, multiple constraints
make biased sampling more difficult.

Let li ≤ fi(·) ≤ ui be the i-th constraint. Let W denote the
set of all wi’s, and let l(wi), u(wi) represent the lower and upper
bound of wi in (7). Let mi be the biased mean of fi(·), that is, mi

is the mean of fi(·) derived on the dataset through biased sampling.
The final optimization problem comes to:

minimize
k∑

i=1

(
2mi

li + ui
− 1

)2

subject to li ≤ mi ≤ ui i = 1, · · · , k and
l(wi) < wi < u(wi) ∀wi ∈ W (10)

Just as (8), (10) is a quadratic programming (QP) problem with
respect to wi’s. QP minimizes

f(w) =
1

2
wTQw+ cTw

with respect to w ∈ Rn subject to linear inequality and linear
equality constraints. It is easy to see that the matrix Q in our prob-
lem is positive definite, so then we can use the ellipsoid method to
solve the problem in polynomial time [18].

4.6 Proof of the lower and upper bounds of wi

Here we give a proof for (7). According to the Cauchy-Schwartz
inequality, we have

mi∑
j=1

pi,jx
2
i,j ×

mi∑
j=1

pi,j ≥ (

mi∑
j=1

pi,jxi,j)
2

i.e.
mi∑
j=1

pi,jx
2
i,j ≥ X

2
i

So if wi > 1, then b > 0; if wi < 1, then b < 0 (see the expression
of b). To guarantee that wi,j > 0, we need the following{

ai + bi minj xi,j > 0 if wi > 1
ai + bi maxj xi,j > 0 if wi < 1

For the first inequality, denote minj xi,j as m, then we have

mi∑
j=1

pi,jx
2
i,j − wiX

2
i +m(wi − 1)Xi > 0

i.e.

wiXi(m−Xi) > mXi −
mi∑
j=1

pi,jx
2
i,j

As m = minj xi,j , so m < Xi and we have the following upper
bound (ub) for wi

wi <
minj xi,jXi −∑mi

j=1 pi,jx
2
i,j

Xi(minj xi,j −Xi)

Similar to the second inequality, we have the following lower bound
(lb) for wi

wi >
maxj xi,jXi −∑mi

j=1 pi,jx
2
i,j

Xi(maxj xi,j −Xi)

5. MCMC SAMPLING
The constraint aware sampling method is theoretically elegant.

However, when the size of the dataset and/or the number of con-
straints becomes very large, it turns into time consuming, as we
will show in our experiments (Section 6). The most important rea-
son is that this method needs one to solve a QP problem, but QP
problems become intractable when the size of the dataset is very
large. Another reason is that each time the method searches for a
valid possible world from scratch. In other words, the method finds
an independent sequence of possible worlds.

An important observation made in Section 1 is that valid possible
worlds tend to cluster together in the search space. This prompts us
to find “correlated” possible worlds, which means we do not search
for valid possible worlds individually, but rather build the next valid
sample based on the current one. This leads to the Markov Chain
Monte Carlo (MCMC) approach for sampling.

The approach consists of two steps. In the first step, we find seed
points that correspond to valid possible worlds in the search space
(Figure 1). In the second step, we perform Monte Carlo walks using
the Metropolis-Hastings sampler, which starts from the seed points
in order to sample more valid possible worlds (Figure 2).

5.1 Find Seed Points in Search Space
Our goal is to find an initial set of possible worlds that satisfy all

the constraints. These possible worlds will be used as seed points
for Monte Carlo walks in the next step.

5.1.1 The Constraint Satisfaction Problem
We can formulate the problem as a constraint satisfaction prob-

lem. Local search techniques such as GSAT and WalkSat proposed
by Selman et al. [24, 25, 26] work well for Boolean satisfiability
problems. Let nv , nc, and np denote the number of variables (i.e.,
tuples in the dataset), number of constraints, and average number of
variables per constraint, respectively. In GSAT and WalkSat, itera-
tively we choose a Boolean variable and change (flip) its value. The
problem is in choosing which variable, and the criterion is to choose
the one whose new value minimizes the number of unsatisfied con-
straints. The time complexity of the process is O(nv · nc · np). In
our case, we have nv = 106, nc = 104, and np = 104, making
one flip needing at least 1014 calculations. Furthermore, Papadim-
itriou [21] shows that we need O(n2

v) flips (for 2-SAT using pure
random walk on an arbitrary satisfiable formula) in order to reach
a satisfying assignment. Thus, we need 1014 × (106)2 = 1026

calculations to find a valid possible world.

5.1.2 Parallel Hopping
As we have shown above, the classic solution to the Boolean

constraint satisfaction problem does not apply in our case, not only
because our variables are not Boolean, but mainly due to the fact
that our dataset is too big (i.e., both the number of variables and
constraints are large).

We propose a parallel hopping approach for this problem. In-
stead of flipping the value of one Boolean variable at a time, in our
approach, we employ a greedy voting technique to select multiple
variables and alter their values at the same time. Furthermore, since
our variables are not Boolean, we also need to decide the direction
of value change (upward or downward) for each variable.

The Initial States. If there are multiple aggregate constraints
with different coverage, multiple valid regions may exist in the
search space and each region is a convex polyhedron formed by
hyperplanes. Our goal is to reach each region. To achieve this goal,
we randomly choose a set of points in the search space, and ap-



ply parallel hopping (described below) from each of them, hoping
they lead us to all of the valid regions. If, however, there is only
one valid region (there is only one constraint, or all constraints
have the same coverage), then we can start with the most proba-
ble state. That is, we start with the state where each Xi has its
most probable value. For example, we let Xi = 20, if its pmf is
{10/0.2, 20/0.6, 30/0.2}. The resulting possible world has maxi-
mal probability.

Voting. For every aggregate constraint c, we compute the aggre-
gate in the current state of the database. If its value is smaller than
the lower bound of c, we vote to increase the value of all variables
in c. Specifically, we increase the votes of every variable in c by an
amount proportional to the difference between c’s lower bound and
the current value of the aggregate. Similarly, we decrease the votes
of every variable in c if the aggregate value is larger than the upper
bound of c. A high level description of the voting method can be
found in Algorithm 1.

Algorithm 1 VOTING

Input: current point val and constraint set C
Output: vote value vote and constraint state consState

1: set vote and consState array to all 0
2: for constraint c ∈ C do
3: sum = evaluation of c at val
4: if sum ≤ c.a then
5: value of c needs adjust upward(consState[c] = 1)
6: for v ∈ c.S do vote[v] ← vote[v] + (c.a− sum)
7: else if sum ≥ c.b then
8: value of c needs adjust downward(consState[c] = −1)
9: for v ∈ c.S do vote[v] ← vote[v] − (sum− c.b)
10: end if
11: end for
12: return vote and consState

Intuitively, if there is only one constraint, then all involved vari-
ables receive consistent votes of either increasing or decreasing.
When there are multiple constraints, it is possible that changing
a variable in one direction may make some constraints easier to
satisfy while it may make other constraints harder to satisfy. The
voting mechanism is introduced to solve this problem; variables re-
ceiving many positive (negative) votes will go up (down) in value,
while variables receiving equal amounts of positive and negative
votes will keep their values relatively unchanged.

For each variable, we adjust its value using a probabilistic method.
We outlined the method in Algorithm 2.

Algorithm 2 VALUE_ADJUSTMENT (MCMC)
Input: direction d, variable v and its pmf, current value of v is u, penalty parameter
p
Output: new value of variable v

1: if d =↑ then
2: normalize the probability of value with penalty 1 − p on the probability of

values smaller than u and penalty 1 + p on the probability of values bigger
than u

3: else if d =↓ then
4: normalize the probability of value with penalty 1 − p on the probability of

values bigger than u and penalty 1 + p on the probability of values smaller
than u

5: end if
6: return sampling from the normalized probability distribution

In the probabilistic approach, we draw values from v’s original
distribution, but with a bias. If we have voted to increase v, values
that are larger than its current value are up-sampled and values that
are smaller than its current values are down-sampled. For example,
assume v’s pmf is {1/0.2, 2/0.2, 3/0.2, 4/0.2, 5/0.2}, and the current
value of v is 3. We create a biased distribution with parameters

Algorithm 3 HOPPING

Input: initial point val, constraint set C, greedy loop number p1 , penalty parameter
p2

Output: a valid point val
1: for i = 1 to MAX-TRIES do
2: set T ← initial temperature and loopTimes ← 0
3: repeat
4: (vote, consState)← V oting(val, C)
5: if loopTimes ≤ p1 then
6: for each variable v do
7: val[v]← Value_Adjustment(↑, v, val[v], p2) if vote[v] > 0
8: val[v]← Value_Adjustment(↓, v, val[v], p2) if vote[v] < 0
9: end for
10: else
11: for constraint c ∈ C do
12: if value of c needs adjust upward then
13: val[v] ← Value_Adjustment(↑, v, val[v], p2) for v ∈ c.S

with vote[v] = maxu∈c.S vote[u]
14: else if value of c needs adjust downward then
15: val[v] ← Value_Adjustment(↓, v, val[v], p2) for v ∈ c.S

with vote[v] = minu∈c.S vote[u]
16: end if
17: end for
18: if val is a valid point then return val
19: Δ← increment of satisfied constraints
20: if Δ < 0 then
21: generate a random number r ∈ [0, 1]

22: if r ≥ exp−Δ/T then restore val with its old value at the begin-
ning of the loop

23: end if
24: T = T × Cooling_factor
25: end if
26: loopTimes ← loopTimes + 1
27: until T = terminating temperature
28: val ← a randomly generated point
29: end for
30: return “No satisfying point found”

p, where the down-sampling rate for values less than the current
value is 1 − p, and the up-sampling rate for values more than the
current value is 1 + p. The result is {1/0.2(1 − p), 2/0.2(1 −
p), 3/0.2, 4/0.2(1 + p), 5/0.2(1 + p)}, which after normalization
(setting p = 0.5), comes to {1/0.1, 2/0.1, 3/0.2, 4/0.3, 5/0.3}. Then
we draw values from this pmf for v. The value of p does not really
matter in this problem, as we have a simulated annealing (SA) like
procedure in Algorithm 3. p is set to 0.5 in the experiments.

The Hopping Algorithm. The algorithm is a loop which runs
until constraints C are satisfied. Internally, it has two phases. The
first phase is more greedy, where we take big steps in hopping.
Specifically, in the first phase, all variables receive positive (nega-
tive) votes change their values upward (downward) simultaneously.
In this phase, we try to reach a local optimum by hopping almost
all the variables together. In the second phase, we perform local
hopping. For each constraint that needs adjustment, we adjust the
value of the variable that receives the largest absolute number of
votes. If the new point is a valid one, we return this point imme-
diately; otherwise the new point is accepted or rejected based on a
simulated annealing (SA) like procedure. The acceptance probabil-
ity is calculated based on the increment of satisfied constraints. The
new point is then accepted if a random generated number is smaller
than the acceptance probability, otherwise it is rejected. The SA
part helps from becoming stuck at local optima. Thus the algo-
rithm can find a valid point in a fixed amount of time. We describe
the hopping algorithm in Algorithm 3.



5.2 Explore Valid Regions Using Markov Chain
Monte Carlo

5.2.1 Markov Chain Monte Carlo
A Markov chain is a stochastic process which consists of possi-

ble states of random variables. It can be denoted as a sequence of
states X1, X2, X3, ..., Xn, which satisfy

p(Xn+1 = x|Xn = xn, Xn−1 = xn−1, ..., X1 = x1) =

p(Xn+1 = x|Xn = xn)

where p(x|y) is the transition probability from state y to state x.
Markov Chain Monte Carlo (MCMC) is a technique to generate
samples from the state space by simulating a Markov chain. The
formed Markov chain is constructed in such a way that the chain
spends more time in the regions with higher importance, i.e., the
stationary distribution of the Markov chain is the same as the target
distribution. That is, the Markov chain can converge to the target
distribution (the posterior) as its equilibrium distribution. From the
perspective of Monte Carlo sampling, as the number of samples
are sufficiently large, all the samples can become the fair samples
from the posterior. Consequently, we are able to approximate the
sophisticated target posterior based on deliberately constructing a
Markov chain of all the Monte Carlo samples.

5.2.2 The Metropolis-Hastings Sampler
The Metropolis-Hastings (MH) sampler is one of the most used

MCMC-based samplers, which generates a sequence of random
walks using a proposal density, and it decides on whether to reject
the proposed moves using the rejection sampling.

The MH algorithm simulates a Markov chain in which each state
Xt+1 only depends on the immediately previous state Xt. The
proposal density Q(X ′|Xt) is used to generate a new proposed
sample X ′ depending on the current state Xt. X ′ is accepted as
the next state Xt+1 with the probability of an acceptance rate α,
which can be formalized as (11). P (X) is the probability of state
X , i.e., the probability of the possible world X .

α = min

{
1,

P (X ′)Q(Xt|X ′)
P (Xt)Q(X ′|Xt)

}
(11)

5.2.3 The MCMC walk in valid regions by the
Metropolis-Hastings Sampler

We make an important observation in Section 1 that valid possi-
ble worlds tend to cluster together in the search space (for a valid
possible world, if you slightly change the value of one of its records,
it will probably remain valid). Indeed, each valid region is bounded
by many hyperplanes forming a convex polyhedron. Thus, if we
start from a point in this region, we can easily reach the next valid
point by transition from the current point.

To explore a valid region, we perform a Monte Carlo walk by the
Metropolis-Hastings sampler (Algorithm 4). The algorithm loops
until enough valid points are sampled. During each loop, the values
of several variables are changed. The number of the variables that
can be changed at a time (in each step of a MCMC walk) is de-
fined as the step length. Parameter stepLength is used to specify
the step length of a MCMC walk, i.e., at most stepLength vari-
ables can change their values simultaneously in each step. For each
variable, it can only transfer to its neighboring values based on the
corresponding pmf. For example, the pmf of u is

{4/0.05, 5/0.1, 6/0.2, 7/0.3, 8/0.35} (12)

Algorithm 4 MCMC
Input: a valid point val, constraint set C, total sample number maxSampling,
step length stepLength
Output: valid point list
1: add val to valid point list
2: prob← prior probability of valid point val
3: while size of valid point list < maxSampling do
4: randomly transfer at most stepLength variables to neighboring values based

on the probabilities
5: if val satisfies C then
6: with probability min{1, prior probability of val

prob } add val to valid point
list, set prob← prior probability of val and jump to the beginning of the
loop

7: end if
8: restore val with its old value at the beginning of the loop
9: end while
10: return valid point list

and its current value is 6. Then the transition vector is

{4/0, 5/0.1, 6/0.2, 7/0.3, 8/0}
because only 5 and 7 are the neighboring values of the current value
6. Then the normalized transition vector can be described as

{4/0, 5/0.17, 6/0.33, 7/0.50, 8/0}
which means that u will take the value of 5 with a probability of
17%, the value of 7 with a probability of 50%, and the value of 6
(the original value) with a probability of 33%. After the transition,
the algorithm will test if the proposed state (proposal sample) satis-
fies constraint set C. If it satisfies, the probability of accepting this
new sample is given by (11). If the proposal density is chosen as
symmetric (Q(x|y) = Q(y|x)), (11) can be simplified as

α = min

{
1,

P (X ′)
P (Xt)

}

Thus with probability α, the new sample (i.e., a possible world or
a point in valid region) is accepted and added into the valid point
list; otherwise, the new point is rejected and no change is made in
the current valid point list.

Suppose there are only two variables, u and v, in the constraint
set C. The pmf of u and v can be formulated as (12). In addition,
the current values of u and v are 5 and 6, respectively. Assume
proposed values of u and v are 4 and 5, and the resulting proposed
sample (u = 4 and v = 5) is valid. The value of α can be calcu-
lated as min{1, 0.05×0.1

0.1×0.2
} = 0.25. In other words, the probability

of accepting the proposed sample (u = 4 and v = 5) is 25%.

5.3 Comparison with Constraint Aware Sam-
pling

The MCMC sampling method tries to locate a valid starting point
(sample) by parallel hopping and then performs a Monte Carlo
walk in order to explore the associated valid region. The constraint
aware sampling approach tries to adjust the prior distribution and
then do a biased sampling from the modified distribution. The
biases (weights) are derived by solving a quadratic programming
(QP) problem. When the number of variables is small (for example
< 1, 000), QP is tractable and the biased sampling approach works
well in experiments (Section 6). When the number of variables
is huge (for example around 1 million), QP becomes intractable.
Therefore, the biased sampling approach is ineffective with huge
datasets. The MCMC sampling method scales better as the number
of variables increases. For cases with more than 1 million variables,
the MCMC sampling method still works.



N The total number of variables in a dataset.
Nc The total number of constraints in a dataset.
Nvar/cons The maximum number of variables in one constraint.

For pseudo-random number generator provided by
the C programming language, the mean of the
random number should be the middle of the interval,
i.e., the average number of variables per constraint
is 0.5Nvar/cons.

Nbiased The number of biased constraints in a dataset.
A biased constraint is a special type of constraint
in which the upper bound is smaller than the
expectation or the lower bound is larger than the
expectation. If X1 +X2 +X3 = 6, constraint
3 ≤ X1 +X2 +X3 ≤ 4 and
7 ≤ X1 +X2 +X3 ≤ 8 are all biased constraints.

Table 3: Meanings of parameters.

6. EXPERIMENTS
In order to investigate the scalability of our proposed methods,

we employ seven uncertain datasets with different sizes in our ex-
periments. Each dataset is associated with 4 parameters as defined
in Table 3. We randomly generate the pmf for each variable, where
each variable can take at most 10 values and the difference between
the neighboring values is at most 5. We also generate the constraint
set C based on experimental parameters and the pmf of all the vari-
ables. The parameters of each dataset are shown in Table 4. All the
experiments are conducted on a Microsoft Windows XP system,
with a dual core 2.90 GHz AMD X2 245 CPU and 4GB RAM.

Dataset N Nc Nvar/cons Nbiased

data 1 1K 1K 0.1K 0
data 2 1K 0.1K 0.1K 10
data 3 1K 0.1K 0.1K 20
data 4 1K 0.1K 0.1K 40
data 5 1K 0.1K 0.1K 80
data 6 1M 10K 1K 20
data 7 1M 10K 10K 20

Table 4: Parameters of our datasets.

6.1 Performance Comparison between Naive,
Constraint Aware and MCMC Sampling
Methods

We investigate the performance of each method on answering the
queries such as “What is the expectation of

∑
{d|d∈c.S,c∈C}

d (13)

under C?”. If we have 10 variables in C, namely X1, · · · , X10,
then the query is “What is the expectation of

∑10
i=1 Xi?”. For each

method, we acquire 1000 valid possible worlds and then calculate
the expectation of (13) under these possible worlds. The naive sam-
pling method randomly generates a possible world and then tests if
the possible world is a valid one. The constraint aware sampling
method and the MCMC sampling method are described in previ-
ous sections.

The constraint aware sampling method will adjust the original
pmf only if biased constraints exist. For data 1, which has no bi-
ased constraints, the constraints aware sampling method works just

as naive sampling. The same sampling result is utilized in the fol-
lowing figures and tables. For the data 2 to 7, the constraint aware
sampling method samples from the biased distribution obtained
from solving a QP problem and calculates the final result with bias
correction using importance weights. Importance weights, in our
research problem, are extremely small because they are the prod-
ucts of a series of small numbers. We used the Apfloat package3 to
handle the arithmetic operation between these small numbers. The
precision was set to the number of variables in the corresponding
dataset. Due to the bias correction procedure, the constraint aware
sampling method requires additional time to calculate the final re-
sult after all the valid possible worlds are acquired. In addition,
solving an exact QP problem by using the constraint aware sam-
pling method may be slow in practice because the exact QP prob-
lem is to minimize f(w) = 1

2
wTQw + cTw subject to Aw ≤ b

and lb ≤ w ≤ ub. Therefore, we adopt an approximate solu-
tion to the QP problem here. Similar to the design in [10, 11], our
approximation approach consists of two phases. Specifically, the
first phase involves the calculation of a feasible point (if one ex-
ists) while the second phase involves the generation of an iterative
sequence of feasible points that converge to the solution. Here we
solve a linear programming (LP) problem which minimizes -

∑
i wi

subject to Aw ≤ b and lb ≤ w ≤ ub. The solution of the LP
problem is a feasible point of the QP problem. In our experiments,
the QP problem is coded in C++, imported into MATLAB R2009b,
and solved through the MATLAB command quadprog. By pass-
ing the solution of the LP problem as the starting point, we employ
the quadprog algorithm in the second phase. Besides, varying the
maximum iteration number of the quadprog may lead to differ-
ent sampling results. Therefore, we also investigate the impact of
different iteration numbers in Section 6.2. For the rest of the exper-
iments, the maximum iteration number is set to ∞. For the MCMC
sampling method, parameter stepLength is set to 10 to achieve
a better trade-off between efficiency and accuracy (see details in
Section 6.3).

6.1.1 Sampling Efficiency
We evaluate the performance of each method on generating 1K

valid samples (samples satisfying the given constraint set). As
shown in Table 5, to obtain 1K valid samples, the MCMC sam-
pling method is several orders of magnitude faster than the other
two methods with a much less number of total samples used. Tak-
ing data 2 as an example, the MCMC sampling method only spent
2.438 seconds while the naive sampling method and the constraint
aware sampling method consumed 139.750 seconds and 208.381
seconds, respectively. The advantage of the MCMC sampling method
over the other two methods on efficiency comes from the fact that
the MCMC sampling maintains the correlation of valid samples,
which significantly reduces the time needed to generate the next
valid sample satisfying the given constraint set.

On the other hand, as Table 5 illustrates, the constraint aware
sampling method outperforms the naive sampling method in terms
of the number of total samples used in data 1, 2, 3 and 4. For data
5, which contains 80 biased constrains and 20 unbiased constraints,
the time needed for the constraint aware sampling method is more
than 24 hours. Furthermore, because the constraint aware sampling
method needs to solve a QP problem, it becomes infeasible when
the number of variables is increased to 1M as in data 6 and data 7.
The “-” symbol means the corresponding method is unable to return
an answer for the given query after a reasonable amount of time. In
addition, when the number of variables becomes extremely large

3Apfloat: http://www.apfloat.org



(such as 1M in data 6 and data 7), the MCMC sampling method
turns out to be the only feasible approach.

6.1.2 Sampling Accuracy
Table 6 presents the sampling accuracy of each method with 1K

valid samples. As shown in Table 6, the accuracy is measured by
the percentage error, which can be calculated using |r−s|

s
∗ 100%

where r is a sampling result and s is the standard answer. In our
problem, the standard answer is obtained by sampling 10K valid
samples using naive sampling method. Consequently, the sampling
accuracy measurement is only practical for data 1 and data 2 since
the naive sampling method only works for these two datasets.

The naive sampling method samples directly from the original
distribution while the constraint aware sampling method samples
from a biased distribution which needs to be proportional to the
original distribution to have a small variance. On the other hand,
the MCMC sampling method samples with a Markov Chain. In
general, we would expect that the relationship between the accu-
racy conferred by these three methods to be “naive” > “CS” >
“MCMC”. The experimental results in Table 6 reflect the above
relationship exactly.

However, as far as the scalability issue is concerned, it is an op-
posite case. According to the results shown in Table 5, the rela-
tionship between the scalability of the above three methods was
“MCMC” > “CS” > “naive”. The method with the lowest precision
("MCMC") scaled best while the method with the highest precision
("naive") scaled the worst. Therefore, compared to the two other
methods, the constraint aware sampling method is more suitable
for medium-scale problem. However, for large-scale problems, the

Dataset Method Expectation Time(s) Total Sample
data 1 naive 13852.825 37.219 325756

CS 13852.825 37.219 325756
MCMC 13860.883 2.031 3628

data 2 naive 13777.852 139.750 1371225
CS 13167.850 208.381 4482
MCMC 14649.546 2.438 5110

data 3 naive - - -
CS 13250.000 204.964 22343
MCMC 14418.426 4.031 4881

data 4 naive - - -
CS 13536.931 228.444 275834
MCMC 14738.640 3.656 8196

data 5 naive - - -
CS - > 24h -
MCMC 14469.884 4.938 13208

data 6 naive - - -
CS - - -
MCMC 456898.292 184.588 3886

data 7 naive - - -
CS - - -
MCMC 482685.494 1932.094 12035

Table 5: Performance comparison (with 1K valid samples ac-
quired). The method “CS” is short for the constraint aware
sampling method. The “Total Sample” column represents the
number of samples the algorithm tested in order to acquire 1K
valid samples. The constraint aware sampling method worked
just as naive sampling in data 1 as data 1 has no biased con-
straints. The same sampling result is used for the constraints
aware sampling method and naive sampling method in data 1.

MCMC sampling method became the only choice even though it
has a relatively higher error.

Dataset naive CS MCMC
Error data 1 0.041% 0.041% 0.099%

data 2 0.017% 4.411% 6.345%

Table 6: Sampling accuracy. The method “CS” is short for the
constraint aware sampling method. The same result is used for
the naive sampling method and the constraints aware sampling
method in data 1.

6.1.3 Hitting the Region with a Higher Importance
Next we focus on the performance of each method with respect

to the ability to discover a region with a higher importance. For
our research problem, a desired sampling scheme should be able to
discover regions with higher importance for estimating the query
result in the entire possible world space, i.e., the returned valid
sample set should have a higher average probability. Figures 3
and 4 plot the distributions of the valid samples discovered by each
method in data 1 and data 2, respectively. Here the X-axis corre-
sponds to the sample value and the Y-axis corresponds to the natu-
ral logarithm of the probability of a sample.

As shown in Figures 3 and 4, compared to the naive sampling
method and the constraint aware sampling method, MCMC sam-
pling method successfully detects the regions with higher impor-
tance (average probability) and draws samples from those regions.
The reason is that the Metropolis-Hastings sampler utilized in our
MCMC sampling method always tends to accept samples with higher
probabilities and is directed to discover regions with higher impor-
tance. On the other hand, the naive sampling method outperforms
the constraint aware sampling in terms of detecting regions with
higher importance for data 2.

6.2 Impact of the Iteration Number in the Con-
straint Aware Sampling Method

In this experiment, we investigate the impact of the iteration
number on the performance of the constraint aware sampling method.
The QP problem in data 2 converges to the exact solution after 1130
iterations. We vary the iteration number from 0 to 1100 and con-
duct biased sampling with the weight derived from the approximate
solution. The sampling results are shown in Table 7, where the col-
umn “QP Time”, “Sample Time” and “Calc Time” represent the
time used in solving the QP problem, biased sampling, and cal-
culating the final result using the samples, respectively. In addi-
tion, the column “Total Time” denotes the sum of the above three
columns. As shown in Table 7, both the time needed for solving
the QP problem and the total time expanded as the iteration num-
ber increased. Besides, the “Calc Time” is almost unchanged as
it only calculates the weighted average of 1000 numbers. In addi-
tion, the smallest error appears when the iteration number is 700,
but the corresponding number of total samples is 20365, which is
much larger than the smallest value 4482. Furthermore, when the
iteration number is 1130, the smallest number of samples, 4482, is
achieved (here the exact solution to the QP problem is used). How-
ever, in this case, the error is 4.411%, which is 13 times bigger than
the smallest value 0.339%. The benefit conferred by the constraint
aware sampling method in efficiency is due to the following fact.
Compared to the importance sampling requiring the biased distri-
bution to be proportional to the original distribution to have small
variance, the constraint aware sampling method does not assume
the biased distribution to be proportional to the original distribu-
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Figure 3: Distribution of valid samples in data 1. The same sampling result is used for the naive sampling method and the constraints
aware sampling method in data 1.
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Data plot of sample values for
MCMC sampling method on data 2
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aware sampling method on data 2

Data plot of sample values for naive
sampling method on data 2

Figure 4: Distribution of valid samples in data 2.

tion, leading to a higher efficiency. We set the iteration number to
∞ in the rest experiments for simplicity.

6.3 Impact of the Step Length in the MCMC
Sampling Method

In this experiment, we examine the impact of the step length on
the performance of our MCMC sampling method by varying the
step length from 1, 2, 3 to 50. As shown in Figure 5 and Table 8,
when we enlarge the step length, the average probability in the re-
turned sample set increases accordingly, and the sampling error
decreases from 6.570% to 1.633%. However, as demonstrated in

Itera Total Error QP Sample Calc Total
-tion Sample (%) Time Time Time Time

0 161293 14.962 0.40 16.08 49.24 65.71
100 25090 13.816 29.83 2.64 49.22 81.69
200 5664 11.830 55.74 0.69 49.24 105.66
300 6793 10.856 77.65 0.80 49.23 127.68
400 17087 8.763 96.07 1.83 49.19 147.09
500 20066 6.551 111.53 2.11 49.17 162.81
600 20261 3.291 123.74 2.13 49.13 174.99
700 20365 0.339 133.18 2.16 49.13 184.46
800 21013 1.058 140.51 2.19 49.17 191.87
900 20432 4.498 145.96 2.13 49.08 197.16

1000 19450 5.167 149.04 2.03 49.12 200.20
1100 5030 4.846 156.57 0.61 49.16 206.34
1130 4482 4.411 158.65 0.56 49.17 208.38

Table 7: Sampling result of different iteration numbers of
quadratic programming on data 2.

Table 8, the running time extends correspondingly with increment
of the step length. Therefore, to achieve a better tradeoff between
accuracy and efficiency, the step length of 10 is suggested and it is
how we decided the step length as 10 in our previous experiments.

Step Expectation Error(%) Time(s) Total
Length Sample

1 14680.677 6.570 0.718 1541
2 14659.281 6.415 0.813 1742
3 14670.668 6.498 1.016 2210
4 14671.328 6.503 1.125 2448
5 14666.368 6.467 1.406 2974

10 14649.546 6.345 2.438 5110
20 14594.688 5.946 5.422 11639
50 14000.483 1.633 30.86 65196

Table 8: Performance of the MCMC sampling method on data
2 with different step lengths (with 1K valid samples generated).

7. CONCLUSION
In this paper, we studied the problem of querying an uncertain

database with aggregate constraints. In many applications, global
statistics of the data (which can be expressed as aggregate con-
straints) are available, but integrating such constraints with the un-
derlying uncertain data in sampling is often computationally chal-
lenging. In this work, we presented two approaches, constraint
aware sampling and MCMC sampling, to improve efficiency in
sampling possible worlds for query processing. We showed that
our approach is effective and efficient for large datasets with a large
number of aggregate constraints.
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Figure 5: Distribution of valid samples for the MCMC sam-
pling method on data 2 with different step lengths (with 1K
valid samples generated, the X-axis is the sample value and the
Y-axis is the natural logarithm of the probability of a sample.)
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