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Abstract—The exploding demand for analytics has refocused
the attention of data scientists on applications requiring aggrega-
tion in recursion. After resisting the efforts of researchers for
more than twenty years, this problem is being addressed by
innovative systems that are raising logic-oriented data languages
to the levels of generality and performance that are needed
to support efficiently a broad range of applications. Foremost
among these new systems, the Deductive Application Language
System (DeALS) achieves superior generality and performance
via new constructs and optimization techniques for monotonic
aggregates which are described in the paper. The use of a special
class of monotonic aggregates in recursion was made possible
by recent theoretical results that proved that they preserve the
rigorous least-fixpoint semantics of core Datalog programs. This
paper thus describes how DeALS extends their definitions and
modifies their syntax to enable a concise expression of applications
that, without them, could not be expressed in performance-
conducive ways, or could not be expressed at all. Then the
paper turns to the performance issue, and introduces novel
implementation and optimization techniques that outperform tra-
ditional approaches, including Semi-naive evaluation. An extensive
experimental evaluation was executed comparing DeALS with
other systems on large datasets. The results suggest that, unlike
other systems, DeALS indeed combines superior generality with
superior performance.

I. INTRODUCTION

The fast-growing demand for analytics has placed renewed
focus on improving support for aggregation in recursion.
Aggregates in recursive queries are essential in many important
applications and are increasingly being applied in areas such
as computer networking [1] and social networks [2]. Many
significant applications require iterating over counts or proba-
bility computations, including machine learning algorithms for
Markov chains and hidden Markov models, and data mining
algorithms such as Apriori. Besides these new applications,
we can mention a long list of traditional ones such as Bill
of Materials (BOM), a.k.a. subparts explosion: this classical
recursive query for DBMS requires aggregating the various
parts in the part-subpart hierarchy. Finally, we have problems
such as computing the shortest paths or counting the number
of paths between vertices in a graph, which are now covered
as foundations by most CS101 textbooks.

Although aggregates were not covered in E.F. Codd’s def-
inition of the relational calculi [3], it did not take long before
early versions of relational languages such as SQL included
support for aggregate functions, namely count, sum, avg, min
and max, along with associated constructs such as group-by.
However, a general extension of recursive query theory and
implementation to allow for aggregates proved an elusive goal,
and even recent versions of SQL that provide strong support

for OLAP and other advanced aggregates disallow the use
of aggregates in recursion and only support queries that are
stratified w.r.t. to aggregates.

Yet the desirability of extending aggregates to recursive
queries was widely recognized early and many partial solutions
were proposed over the years for Datalog languages [4]–
[10]. The fact that, in general, aggregates are non-monotonic
w.r.t. set-containment led to proposals based on non-monotonic
theories, such as locally stratified programs and perfect models
[11], [12], well-founded models [13] and stable models [14].
An alternative approach was due to Ross and Sagiv [9],
who observed that particular aggregates, such as continuous
count, are monotonic over lattices other than set-containment
and thus can be used in non-stratified programs. However
practical difficulties with this approach were soon pointed out,
namely that determining the correct lattices by programmers
and compilers would be quite difficult [15], and this prevented
the deployment of the monotonicity idea in practical query
languages for a long time. Fortunately, we recently witnessed
some dramatic developments change the situation completely.
Firstly, Hellerstein et al., after announcing a resurgence of
Datalog, showed that monotonicity in special lattices can be
very useful in proving formal properties such as eventual con-
sistency [16]. Secondly, we see monotonic aggregates making
a strong comeback in practical query languages thanks to the
results published in [17], [18] and in [2], summarized below.

The formalization of monotonic aggregates proposed in
[17], [18] preserves monotonicity w.r.t. set containment, and
it is thus conducive to simplicity and performance that follow
respectively from the facts that (i) users no longer have to deal
with lattices, and (ii) the query optimization techniques, such
as Semi-naive and magic sets remain applicable [17]. SociaLite
[2] also made an important contribution by showing that
shortest-path queries, and other algorithms using aggregates in
recursion, can be implemented very efficiently so that in many
situations the Datalog approach becomes preferable to that of
hand-coding big-data analytics in some procedural language.

These dramatic advances represented a major source of
opportunities and challenges for our Deductive Application
Language (DeAL) and its system DeALS. In fact, unlike
the design of the SociaLite system where the performance
of recursive graph algorithms with aggregates had played a
role, DeALS has been designed as a very general system
seeking to satisfy the many needs and lessons that had been
learned in the course of a long experience with logic-based
data languages, and the LDL [19] and LDL++ [20] experiences
in particular. Thus, DeALS supports key non-monotonic con-
structs having formal stable model semantics, including, e.g.,



XY-stratification and the choice construct that were found quite
useful in program analysis [21], and user-defined aggregates
that enabled important knowledge-discovery applications [22].

In addition to a rich set of constructs, DeALS was
also designed to support a roster of optimization techniques
including magic sets, supplementary magic sets and existential
quantification. Introducing powerful new constructs and their
optimization techniques by retrofitting a system that already
supports a rich set of constructs and optimizations represented
a difficult technical challenge. In this paper, we describe how
this challenge was met with the introduction of new optimiza-
tion techniques for monotonic aggregates. We will show that
DeALS now achieves both performance and generality, and
we will underscore this by comparing not only with SociaLite
but also with systems such as DLV [23] and LogicBlox [24]
that realize different performance/generality tradeoffs.

Overview. The first of two main parts of this paper begins with
Section II which presents the syntax and semantics for the min
(mmin) and max (mmax) monotonic aggregates. Section III
discusses the evaluation and optimization of monotonic aggre-
gate programs. Section IV presents implementation details for
mmin and mmax and the DeALS storage manager. Section V
presents experimental results for Sections II-IV. The second
part of this paper begins with Section VI discussing the count
(mcount) and sum (msum) monotonic aggregates, followed
by their implementation in Section VII and experimental vali-
dation in Section VIII. Section IX provides additional DeAL
program examples. Section X presents the formal semantics
on which our aggregates are based. Additional related works
are reviewed in Section XI and we conclude in Section XII.

Preliminaries. A Datalog program P is a finite set of rules,
or Horn Clauses, where rule r in P has the form A ←
A1, . . . , An. The atom A is the head of r. A1, . . . , An, the
body of r, are literals, or goals, where each literal can be
either a positive or negated atom. An atom has the form
p(t1, . . . , tj) where p is a predicate and t1, . . . , tj are terms
which can be constants, variables or functions. An r with an
empty body is a fact. A successful assignment of all variables
of rule body goals results in a successful derivation for the
rule head predicate. Datalog programs use set semantics and
are (typically) stratified (i.e. partitioned into levels based on
rule dependencies) and executed in level-by-level order, in a
bottom-up fashion. Datalog programs can be evaluated using
an iterative approach such as Semi-naive evaluation [10].

II. MMIN AND MMAX MONOTONIC AGGREGATES

An mmin or mmax monotonic aggregate rule has the form:

p(K1, . . . , Km, aggr〈T〉)← Rule Body.

In the rule head, K1, . . . , Km are the zero or more group-by
arguments we also refer to as K, aggr ∈ {mmax, mmin} is the
monotonic aggregate, and T, the aggregate term, is a variable.

The aggregate functions mmin and mmax map an input
set or multiset, we will call G, to an output set, we will
call D. Then, given G, for each element g ∈ G mmin will
put g into output set D if g is less than the least value
mmin has previously computed (observed) for G. Similarly,
given an input set G, for each element g ∈ G mmax will

put g in output set D if g is greater than the greatest value
mmax has previously computed for G. The mmin and mmax
aggregates are monotonic w.r.t. set-containment and can be
used in recursive rules, and G should be viewed as a set
containing the union of all values for a single group (group-by
key) across all iterations. These aggregates memorize the most
recently computed value and thus require a single pass1 over
G. When viewed as a sequence, the values produced by mmin
and mmax are monotonic.

A. Running Example

The All-Pairs Shortest Paths (APSP) program has received
much attention in the literature [6], [9], [13], [25], [26]. APSP
calculates the length of the shortest path between each pair of
connected vertices in a weighted directed graph.

Example 1: APSP with mmin
r1 . spaths(X, Y, mmin〈D〉)← edge(X, Y, D).
r2 . spaths(X, Y, mmin〈D〉)← spaths(X, Z, D1), edge(Z, Y, D2),

D = D1+ D2.
r3 . shortestpaths(X, Y, min〈D〉)← spaths(X, Y, D).

Example 1 is the DeAL APSP program with the mmin
aggregate. The edge predicate denotes the edges of the graph.
The intuition for this program is as follows. In the recursion
(r1, r2), an spaths fact will be derived if a path from X to Y is
either i) new or ii) has length shorter than the currently known
length from X to Y. r1 finds the shortest path for each edge. r2
is the left-linear recursive rule that computes new shortest paths
for spaths by extending previously derived paths in spaths
with an edge. Logically, this approach can result in many facts
spaths for X, Y, each with a different length. Therefore, the
program is stratified using a traditional (non-monotonic) min
aggregate (r3) to select the shortest path for each X, Y.

APSP By Example. Next, we walk through a Semi-naive
evaluation of the APSP program from Example 1.

edge(a, b, 1). edge(a, c, 3). edge(a, d, 4).
edge(b, c, 1). edge(b, d, 4). edge(c, d, 1).

Fig. 1. edge Facts for Example 1

First, r1 in Example 1, the exit rule, is evaluated on the
edge facts in Fig. 1. In the rule head in r1, X and Y, the
non-aggregate arguments, are the group-by arguments. The
mmin aggregate is applied to each of the six edge facts
and six spaths facts are successfully derived (not displayed
to conserve space) because no aggregate values had been
previously computed (memorized) and each group (i.e. (a, b))
was represented among the facts only once. For the spaths
predicate, mmin is now initialized with a value for each group.

spaths(a, c, 2) ← spaths(a, b, 1), edge(b, c, 1), 2=1+1.

FAIL← spaths(a, b, 1), edge(b, d, 4), 5=1+4. [i]
FAIL← spaths(a, c, 3), edge(c, d, 1), 4=3+1. [ii]

spaths(b, d, 2) ← spaths(b, c, 1), edge(c, d, 1), 2=1+1.

Fig. 2. Derivations of Example 1, r2 - Iteration 1

Semi-naive evaluates the recursive r2 rule from Example
1 using the six spaths derived by r1. Fig. 2 displays four

1SQL 2003 max, min, count and sum aggregates on the unlimited
preceding window are similar to DeAL’s monotonic aggregates.



derivations attempted by r2 in its first iteration. Derivations
not displayed failed to join spaths and edge facts. The first
attempt results in a new spaths fact because spaths(a, c, 2)
has an aggregate value less than the previous value for (a, c),
which was 3 (from r1). The failures denoted [i] and [ii]
occurred because the facts to be derived would have aggregate
values not less than the previous value for (a, d), which is 4.
Finally, spaths(b, d, 2) is derived (2 < 4 for (b, d)).

spaths(a, d, 3)← spaths(a, c, 2), edge(c, d, 1), 3=2+1.

Fig. 3. Derivations of Example 1, r2 - Iteration 2

Using the two facts derived in Fig. 2, Semi-naive per-
forms a second iteration using r2. As displayed in Fig. 3,
spaths(a, d, 3) is derived because (3 < 4) for (a, d). Now,
no new facts can be derived and a fixpoint is reached.

shortestpaths(a, c, 2)← {spaths(a, c, 3), spaths(a, c, 2)}
shortestpaths(a, d, 3)← {spaths(a, d, 4), spaths(a, d, 3)}
shortestpaths(b, d, 2)← {spaths(b, d, 4), spaths(b, d, 2)}

Fig. 4. Derivations of Example 1, r3

Lastly, r3 is evaluated over the spaths facts derived during
recursion and uses a stratified min aggregate to derive only
the fact with the shortest path for each group. Fig. 4 displays
derivations of r3 on groups that had multiple facts derived
in recursion showing why rules like r3 are necessary with our
semantics. In Section IV, we will discuss optimizations so rules
such as r3 do not have to be evaluated.

III. MONOTONIC AGGREGATE EVALUATION

In this section, we present optimized evaluation techniques
for programs with monotonic aggregates. We start with a
review of Semi-naive fixpoint evaluation, the technique that
serves as the basis for our optimized evaluation approaches.

In Fig. 5, the algorithm for Semi-naive, M is the initial
model (database), S contains all facts obtained thus far, δS
and δS′ contain facts obtained during the previous and current
iteration, respectively, and TE and TR are the Immediate
Consequence Operator (ICO) for the exit rule(s) and the recur-
sive rule(s), respectively. The algorithm evaluates as follows.
Firstly, Semi-naive applies TE (i.e. the exit rules) on M to
derive the first set of new δ facts δS (line 2). Then, until no
new facts are derived during an iteration, Semi-naive evaluates
TR on δS to derive new facts to be used in the next iteration.
The new set of δ facts (δS′) is produced only after the removal
of facts found in previous steps (line 5).

1: S := M ;
2: δS := TE(M);
3: S := S ∪ δS;
4: while δS 6= ∅ do
5: δS′ := TR(δS)− S;
6: S := S ∪ δS′;
7: δS := δS′;

8: return S;

Fig. 5. Semi-naive Evaluation

Symbolic differentiation rules [10] can be applied to mono-
tonic aggregate rules in a straightforward manner to produce
rules for Semi-naive. We omit details in the interest of space.

Although Semi-naive efficiently evaluates general Datalog
programs, monotonic aggregate programs can be evaluated
with even greater efficiency than Semi-naive provides. The
max-based optimization [18] identified that counting only
needs to be performed on maximum (max) values if only
monotonic arithmetic and boolean functions are used. In this
work, we expand this observation which we refer to as the
Monotonic Optimization. The intuition behind the Monotonic
Optimization is that with our monotonic aggregates, mono-
tonicity is preserved and values other than the max (mmax) or
min (mmin) will add no new results and thus can be ignored.
Only the max (min) intermediate values need to be used in
derivations to produce the final max (min) value. In fact, the
last fact produced by the aggregate for a group contains the
greatest (mmax) or least (mmin) aggregate value, making this
fact the only fact for the group that we need to produce for
the next iteration.

A. Monotonic Aggregate Semi-naive Evaluation

1: S := M ;
2: δS := getLast(TE(M));
3: S := S ∪ δS;
4: while δS 6= ∅ do
5: δS′ := getLast(TR(δS))− S;
6: S := S ∪ δS′;
7: δS := δS′;
8: return S;

Fig. 6. Monotonic Aggregate Semi-naive Evaluation (MASN)

The Monotonic Optimization enables an optimized Semi-
naive for monotonic aggregates we call Monotonic Aggregate
Semi-naive Evaluation (MASN). Fig. 6 is the algorithm for
MASN, which closely resembles Semi-naive. MASN’s differ-
ences with Semi-naive are as follows. Here we use getLast()2

to produce, from the input set, a set containing i) all facts
from predicates that do not have monotonic aggregates, and ii)
the last derived fact for each group from monotonic aggregate
predicates. Now after the TE or TR produces a set of facts,
getLast will be applied to produce the actual new δS′.
Otherwise, MASN is the same as Semi-naive.

B. Eager Monotonic Aggregate Semi-naive Evaluation

MASN employs a level-by-level iteration boundary of a
breadth-first search (BFS) algorithm where δ facts derived
during the current iteration will be held for use until the next
iteration. However, facts produced from monotonic aggregate
rules can be used immediately upon derivation. Looking at the
derivations in the walk-through evaluation of APSP in Section
II-A one can see a case where Semi-naive, and in this case
MASN as it would have evaluated the same as Semi-naive, did
not capitalize on this property of monotonic aggregates.

Fig. 7 shows the derivations of interest extracted from
Fig. 2. We see the second derivation performed using

2DeALS supports MASN by maintaining a single fact per group in δS′.



Example 1 r2 evaluation with Semi-naive or MASN
spaths(a, c, 2)← spaths(a, b, 1), edge(b, c, 1), 2=1+1.

FAIL← spaths(a, c, 3), edge(c, d, 1), 4=3+1.

Fig. 7. Example of Iteration Boundary of MASN

spaths(a, c, 3) (from δS) and resulting in failure because the
value for (a, d) was 4. However, at the time the derivation
is attempted, spaths(a, c, 2), the result of the immediately
previous derivation, existed. Had spaths(a, c, 2) been used,
spaths(a, d, 3) would have been derived here, instead of
requiring another iteration (Fig. 3).

To further capitalize on the Monotonic Optimization, we
propose Eager Monotonic Aggregate Semi-naive Evaluation
(EMSN). With EMSN, facts produced from monotonic aggre-
gate rules are immediately available to be used in derivations.
EMSN evaluates recursive rules with monotonic aggregates in
a fact-oriented (fact-at-a-time) manner and the facts to use
in an iteration are determined by the set of groups (keys)
that had aggregate facts derived during the previous iteration.
With EMSN, derivations with monotonic aggregates are always
performed with the current aggregate value for the group.

Fig. 8 is EMSN. In EMSN, recursive rules with monotonic
aggregates are evaluated fact-at-a-time and all other recursive
rules are evaluated using Semi-naive. Rules are partitioned
into two sets, each with its own ICOs – TEA

and TRA
are

the ICO for the monotonic aggregate exit and recursive rules,
respectively, and TEN

and TRN
are the ICO for the remaining

exit and recursive rules, respectively. TRA
will be applied on

one fact at a time. δSA and δS′
A are the sets of facts obtained

during the previous and current iteration, respectively, for the
monotonic aggregate rules, while δS and δS′ are the sets
of facts obtained during the previous and current iteration,
respectively, for the remaining rules. δSAKeys

is the set of
keys for the aggregate groups that had facts derived during
the previous iteration. M is the initial model, S contains all
facts obtained thus far. newfact is a fact derived from a single
application of TRA

.

Important points of Fig. 8 are as follows. We use
getKeys() to project out the aggregate value from the ag-
gregate facts to produce the set of facts representing groups
(keys) to use in derivations in the next iteration. For example,
getKeys({spaths(a, b, 1)}) would produce {spaths(a, b)}.

1: S :=M ;
2: δSA := TEA(M);
3: δSAKeys := getKeys(δSA);
4: δS := TEN (M);
5: S := S ∪ δS ∪ δSA;
6: while δS 6= ∅ and δSAKeys 6= ∅ do
7: for all key ∈ δSAKeys do
8: while (newfact := TRA(getFact(key))) do
9: δS′A := δS′A ∪ {newfact};

10: δS′ := TRN (δS)− S;
11: S := S ∪ δS′ ∪ δS′A;
12: δSAKeys := getKeys(δS′A);
13: δS := δS′; δS′A = ∅
14: return S;

Fig. 8. Eager Monotonic Aggregate Semi-naive Evaluation Sketch (EMSN)

getKeys() is applied to the set produced by TEA
(M) to

produce the initial δSAKeys
(line 3). TEN

(remaining rules)
is applied to M to produce the initial δS (line 4). Once
in the recursion, individually, each key in δSAKeys

is used
to retrieve its group’s current fact from the aggregate re-
lation (getFact(key)), which TRA

is then applied to (line
8). Successful derivations result in newfact being added to
δS′

A (line 9). Then, TRN
(remaining rules) is applied to δS

and duplicates are eliminated producing δS′, the set of non-
monotonic-aggregate facts to be used in the next iteration (line
10). getKeys(δS′

A) produces the set of keys to be used in
derivations in the next iteration (line 12). This process repeats
until no new facts are produced during an iteration.

Example 1 r2 evaluation with EMSN
spaths(a, c, 2)← spaths(a, b, 1), edge(b, c, 1), 2=1+1.
spaths(a, d, 3)← spaths(a, c, 2), edge(c, d, 1), 3=2+1.

Fig. 9. EMSN Fact-at-a-time Efficiency

Now, consider the same scenario from Fig. 7, but this time
using EMSN. As shown in Fig. 9, now after spaths(a, c, 2)
is produced, it is immediately used in the next derivation
resulting in spaths(a, d, 3) being derived an iteration earlier
than with Semi-naive or MASN. Moreover, spaths(a, c, 3)
will not be used in any further derivations as it would result
in the derivations of facts that will not lead to a final answer
now with the existence of spaths(a, c, 2).

Discussion. With the application of the ICO for recursive
monotonic aggregate rules (TRA

) on an individual fact, rather
than on a set of facts, EMSN can use facts immediately
upon derivation. Although EMSN is based on Semi-naive, and
therefore BFS, EMSN has depth-first search (DFS) character-
istics. Like BFS, EMSN still uses a level-at-a-time (iteration)
approach guided by facts in δS and δSA that were derived
during the previous iteration. However, because EMSN uses
the most recent aggregate value for the group, regardless of
when the value was computed, EMSN can evaluate deeper
than a single level of the search space during an iteration
of evaluation. The result is higher (mmax) or lower (mmin)
aggregate values being derived earlier in evaluation, which in
turn prunes the search space to avoid derivation of facts that
will not result in final values.

We considered an alternative approach for EMSN that
instead maintains the set of aggregate facts derived during an
iteration (δS′

A) where modification to the aggregate relation
results in either an update or insert to δS′

A. However, with each
iteration δS′

A would become δSA and a new δS′
A would be

started, therefore every modification to the aggregate relation
would require both δSA and the new δS′

A to be searched to
be updated with the new value, even if the aggregate group
is not present in δSA. Although δSA and δS′

A are generally
smaller than the aggregate relation, if an aggregate group has
many new results during an iteration, efficiency gained from
searching smaller sets instead of searching a larger aggregate
relation to retrieve the aggregate value when needed (line 8 in
Fig. 8) would be offset by searching these sets many times.
Furthermore, this requires a more complicated implementation
to properly synchronize facts in multiple data structures.



IV. MMIN AND MMAX IMPLEMENTATION

This section contains details of our system implementation
for supporting the mmin and mmax aggregates.

A. System Overview

DeALS is an interpreted Datalog system with three main
components — the compiler, the interpreter and the storage
manager. Monotonic aggregate rules are supported by the com-
piler with an aggregate rewriting approach based on techniques
from [27]. The compiler produces an instantiated AND/OR
Graph [20] representing the given program, which the inter-
preter evaluates to produce query results. The interpreter uses
tuple-at-a-time pipelining and evaluates nodes of the AND/OR
graph representing goals in rule bodies in a left-to-right fashion
with intelligent backtracking [19]. The interpreter uses nested
loops joins but will create an index and use an index nested
loops join if the argument binding analysis identifies a bound
join argument. For instance, for r2 in Example 1, the interpreter
will use an index nested loops join – edge will be indexed on
Z (first argument) which is bound by spaths.

B. Storage Manager Overview

The DeALS storage manager provides support for main
memory storage and indexing for predicate relations. DeALS
supports several B+Tree data structure variants for tuple stor-
age and indexing. A B+Tree stores fixed-size keys in internal
and leaf nodes and non-key attributes in leaf nodes. Leaf nodes
have pointers to their right neighbors to enable fast scanning of
the tree. Through testing we determined our implementations
perform best on average using a linear key search at both
internal and leaf nodes with 256 bytes allocated for keys
(e.g., 32 64-bit long keys) in each node, which results in
shallow trees. DeALS supports B+Tree TupleStores, which
store tuples in a B+Tree. DeALS also supports an Unordered
Heap TupleStore (UHT) where tuples are stored as fixed-
size entries in insertion order in large byte arrays. UHT can
be given multiple indexes (e.g., B+Tree), which they remain
synchronized with at all times. UHT enable a highwatermark
approach for Semi-naive where each iteration is a contiguous
range of tuples.

1) B+Tree Aggregators: Early experimentation found ag-
gregation using either i) UHT with B+Tree or Linear Hashing-
based secondary indexes or ii) B+Tree TupleStores lacking in
execution time performance. The B+Tree Aggregator Tuple-
Store (B+AT) is a B+Tree TupleStore optimized for pipelined
aggregation in recursive queries that provides both good read
and write performance. B+AT store fixed-size keys in internal
and leaf nodes and fixed-size aggregate values in leaf nodes.
Keys are unique and only one aggregate value per key is
maintained. Leaf nodes have pointers to their right neighbors
and linear search is used in both internal and leaf nodes. In a
B+AT, aggregation is performed in the leaves, therefore only
one search of the tree is needed to retrieve the previous value,
compare it with the new value and perform the update.

Unlike with UHT, facts in B+AT are not easily tracked by
reference or range because of node splitting. Therefore, during
evaluation of recursive queries with EMSN, after an aggregate
value is modified, the B+AT inserts the modified entry’s key

into the set of keys, which is also a B+Tree3, to process for
the next iteration (δSAKeys

in Fig. 8). This approach requires
two tree searches with an aggregate value modification – one
B+AT search which results in a modified aggregate value and
one δSAKeys

search to record the key. Should no modification
occur, then only the B+AT is searched. To retrieve aggregate
facts to use in derivations (line 8 in Fig. 8), a specialized cursor
scans δSAKeys

, using each key to retrieve the key’s aggregate
value from the B+AT.

Hash table approaches can be an appealing alternative
to B+Trees. In Section V we present experimental results
comparing DeALS with a system that utilizes a hash table
approach and highlight some of key differences between using
B+Trees and hash tables.

C. mmin and mmax Implementation

The mmin and mmax implementation tracks the least
(mmin) or greatest (mmax) value computed for each group
where each group has one tuple in the TupleStore. We use
a single relation schema with one column for each of the
predicate’s group-by argument and a column for the aggregate
value. Specifically, B+AT keys are the group-by arguments
with the aggregate value stored in the leaf. UHT are given
indexes with the group-by arguments as keys. For instance,
spaths in Example 1 uses B+AT with keys (X, Y) and each
X, Y is stored with its current value (D) in a leaf node.

D. Operational Optimizations

No Recursive Relation Storage. Due to the Monotonic Op-
timization, we only need to maintain a single fact per group
and when a new value for the group is successfully derived,
we overwrite the previous value. If the recursive predicate
and monotonic aggregate use separate stores, with EMSN
and pipelining, the result is the recursive relation store is
merely being synchronized with the aggregate relation store.
Therefore, we do not allocate the recursive predicate a store,
and instead have it read from the monotonic aggregate store.

Final Results via Monotonic Aggregate. Since the monotonic
aggregate maintains the value for each group in its TupleStore,
when a fixpoint is reached, its TupleStore contains the final
results. For instance, instead of evaluating r3 in Example 1 the
recursion is materialized by the system, as it would have been
by the stratified aggregate, and the final values are retrieved
from the monotonic aggregate’s TupleStore.

V. MMIN & MMAX PERFORMANCE ANALYSIS

All experiments on synthetic graphs were run on a machine
with an i7-4770 CPU and 32GB memory running Ubuntu
14.04 LTS 64-bit. The experiments on real-life graphs were run
on a machine with four AMD Opteron 6376 CPUs and 256GB
memory running Ubuntu 12.04 LTS 64-bit. Memory utilization
is collected by the Linux time command. Execution time
and memory utilization are calculated by performing the same
experiment five times, discarding the highest and lowest values,
and taking the average of the remaining three values. All
experiments on systems written in Java were run using Java

3Since we scan the set, we use a B+Tree which stores the keys in order
and can benefit EMSN.
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Fig. 10. Execution time and memory utilization of APSP on synthetic graphs

1.8.0 except for SociaLite (0.8.1) which did not support Java
1.8.0. Experiments for SociaLite were run using Java 1.7.0.

Datasets. An n-vertex graph used in experiments has integer
vertex labels ranging from 0 to n − 1. We used three kinds
of synthetic graphs — 1) directed acyclic graphs (DAGs),
generated by connecting each pair of vertices i and j (i < j)
with (edge) probability p; 2) random graphs, generated by
connecting each pair of vertices with (edge) probability p;
3) scale-free graphs, generated using GTgraph4. The graphs
are shuffled after generation where one random permutation is
applied to the vertex labels and another random permutation
is applied to the edges. The real-life graphs are not shuffled
but we relabeled graphs whose vertex labels are beyond the
range of [0, n− 1] while maintaining the original edge order.
A text description such as “10K/20K” indicates the graph has
10,000 vertices and 20,000 edges.

Configuration. B+AT and B+Tree indexes for UHT were
configured with 256 bytes allocated for keys in each node
(internal and leaf). Other than experiments in Section V-B,
DeALS used EMSN with B+AT.

A. Datalog Implementation Comparison

DeALS is a sequential, interpreted, main memory Java
implementation. We compare DeALS execution time and
memory utilization performance against three Datalog im-
plementations supporting aggregates in recursion — 1) the
DLV system5, the state-of-the-art implementation of disjunc-
tive logic programming; 2) the commercial LogicBlox system,
which supports aggregates in recursion using staged partial
fixpoint semantics6. From log files produced during execution
of recursive queries with aggregates, we determined LogicBlox
indeed uses an approach akin to Semi-naive, which uses only
new facts found in the current iteration in derivations in the

4GTgraph, http://www.cse.psu.edu/∼madduri/software/GTgraph/.
5DLV with recursive aggregates support, http://www.dbai.tuwien.ac.at/proj/

dlv/dlvRecAggr/.
6LogicBlox 4 migration guide, https://download.logicblox.com/wp-content/

uploads/2014/05/LB-MigrationGuide-40.pdf.

next iteration; 3) the SociaLite7 graph query language, which is
compiled into code-generated Java, efficiently evaluates single-
source shortest paths (SSSP) queries using an approach with
Dijkstra’s algorithm-like efficiency [2] and supports a left-
linear recursive APSP which it evaluates using Semi-naive.
We used SociaLite 0.8.1 as it had the best sequential execution
time performance of SociaLite versions available to us.

APSP on Synthetic Graphs. Fig. 10 shows the results of
APSP on synthetic graphs with random integer edge costs
between 1-100 executed with DeALS, SociaLite and DLV. We
experimented with two versions of LogicBlox — 3.10.15 and
4.1.3. The former does not support aggregates in recursion and
although we can express APSP in a stratified program, it only
terminates on DAGs, and only G1(0.286s) and G2(18.328s)
finish within 24 hours. The latter supports aggregates in
recursion however, only G1(4.809s), G2(6.697m), G7(4.774h)
and G13(3.977h) finish within 24 hours. We do not report
LogicBlox results in Fig. 10 nor for the remaining experiments.

Among the 18 graphs described in Fig. 10, we found
SociaLite has the fastest execution time on three graphs and
DeALS has the fastest execution time on the remaining 15
graphs. DeALS is more than two times faster than SociaLite
on sparse graphs where the average degree of each vertex is
only two (e.g., G7, G10 and G16). This advantage decreases
as the average degree increases from two to ten. The main
reason for this change is due to the different designs used
by DeALS and SociaLite. SociaLite uses an array of hash
tables with an initial capacity of around 1,000 entries to
maintain the delta relations, whereas DeALS uses a B+Tree.
The initialization cost of a hash table is higher than that of
a B+Tree, while the cost of accessing a hash table is lower
than that of a B+Tree. For graphs with small average degree,
the initialization cost may account for a large percentage of
the execution time, thus DeALS is faster than SociaLite.
The impact of the initialization cost reduces as the average
degree increases, and thus SociaLite is faster than DeALS
on denser graphs. However, this faster execution time comes

7https://sites.google.com/site/socialitelang/



at the expense of higher memory utilization. SociaLite uses
more than two times the memory as DeALS on all 18 graphs.
Although the C-based DLV has significantly lower memory
utilization than both Java-based DeALS and SociaLite, DLV
is extremely slow compared with both DeALS and SociaLite
on DAGs. These results suggest that DeALS achieves the best
execution time versus memory utilization trade-off on sparse
graphs among the three compared systems.

APSP on Real-life Graphs. Table I shows the results of APSP
on three real-life graphs from the Stanford Large Network
Dataset Collection8. The provided graphs do not have edge
costs, therefore we assigned unit cost to each edge. The results
are similar to that of synthetic graphs — DeALS executes
fastest while DLV has the lowest memory utilization. These
results suggest that on real-life workloads the B+Tree-based
design (low initialization cost) adopted by DeALS is more
favorable than the hash table-based design used by SociaLite.

TABLE I. EXECUTION TIME AND MEMORY UTILIZATION OF APSP ON
REAL-LIFE GRAPHS

HepTh Gnutella Slashdot
S1 S2 S3 S1 S2 S3 S1 S2 S3

Time(h) 0.98 17.72 0.39 13.31 4.69 0.49 >24.00 >24.00 2.72
Mem(GB) 12.76 0.99 7.19 41.57 0.48 23.46 >89.59 >1.06 64.70

S1, S2, S3 represent SociaLite, DLV and DeALS respectively.
HepTh(28K/353K): High-energy physics theory citation network.
Gnutella(63K/148K): Gnutella peer-to-peer network.
Slashdot(82K/549K): Slashdot social network.

SSSP on Real-Life Graphs. Fig. 11 shows the results of
SSSP on five real-life graphs from the USA road networks
datasets9. For each graph, we evaluate SSSP on ten randomly
selected vertices, and we report the min / (geometric) average /
max execution time in the form of error bars. Since execution
time captured for DLV includes time for loading the graph,
evaluating the query and outputting the result, and query
evaluation only accounts for a small percentage of overall
time observed, timing for DLV is less informative for this
experiment and thus we only report results for SociaLite and
DeALS. SociaLite generates a Java program that evaluates
the query using the Dijkstra’s algorithm. The generated code
achieves more than one order of magnitude speedup com-
paring to LogicBlox [2]. However, our interpreted DeALS
is faster than the code-generated SociaLite for SSSP on the
road network graphs as shown in Fig. 11. This result is not
surprising in the sense that EMSN optimizes Semi-naive, and
the Bellman-Ford algorithm (equivalent to Semi-naive) usually
yields comparable performance with the Dijkstra’s algorithm
on large sparse graphs.

USA road networks:
NY(264K/734K)
E(3,598K/8,778K)
W(6,262K/15,248K)
CTR(14,082K/34,292K)
USA(23,947K/58,333K)  10
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Fig. 11. Execution time of SSSP on Road Networks Datasets

8Stanford large network dataset, http://snap.stanford.edu/data/index.html.
9USA road networks, http://www.dis.uniroma1.it/challenge9/download.

shtml.

B. DeALS Storage Manager Evaluation

This experiment shows i) how EMSN performs relative
to MASN and ii) how B+AT perform relative to UHT. We
evaluated APSP on synthetic graphs G1, G2, G7, G8, G13
and G14 from Fig. 10. The (geometric) average execution
time and memory utilization over the six graphs are displayed
in Table II. Using UHT with B+Tree indexes, EMSN has a
lower average execution time than MASN by 13%. A noticeable
difference in performance is observed when using B+AT vs.
UHT for EMSN. B+AT is 2.6 times faster than UHT and
requires only approximately 25% of memory needed by UHT.

TABLE II. EVALUATION TYPE BY STORAGE CONFIGURATION

Evaluation Type Storage Configuration Time (s) Memory (GB)
MASN UHT w/ B+Tree index 77.743 4.087
EMSN UHT w/ B+Tree index 68.927 4.131
EMSN B+AT 26.450 1.048

C. Statistical Analysis of Evaluation Methods

To provide a characterization of the relative performance
of EMSN compared to Semi-naive, we perform an analysis
over sets of graphs using the statistical estimation technique
from [28]. Statistics calculated10 are 1) total number of facts
derived by the recursive predicate (derived facts) and 2) total
aggregate size of δS across all iterations (δ facts). These
two statistics help to quantify the amount of computation the
evaluation method must perform. For each statistic and each
vertex number/edge probability combination, after each run of
the program, the statistic is included in the average (m̄) until
a statistically significant number (30) of different graphs has
been used AND m̄ is within 5% error with 95% confidence11.

We perform the analysis comparing APSP evaluated using
EMSN to APSP evaluated using Semi-naive. We use randomly
generated DAGs and random graphs with edge probability
between 0.1 and 0.9 (increments of 0.1) and random integer
edge cost between 1-50. EMSN and Semi-naive use the same
sequence of graphs. On DAGs, Semi-naive requires 3-11%
more derived and δ facts and on random graphs requires 13-
18% more derived and δ facts than EMSN, respectively.

VI. MCOUNT AND MSUM MONOTONIC AGGREGATES

With efficient support for monotonic count and sum aggre-
gates, DeALS supports many exciting applications.

An mcount or msum monotonic aggregate rule has the form:

p(K1, . . . , Km, aggr〈(T, PT)〉)← Rule Body.

In the rule head, K1, . . . , Km are the zero or more group-by
arguments (K), aggr ∈ {mcount, msum} is the monotonic
aggregate, and (T, PT) is the aggregate term pair passed from
the body where T is a variable and PT is a constant or a variable
indicating the partial count/sum contributed by T.

10For these statistics, we assume a normal distribution (N(µ, σ2), with
mean µ and variance σ2).

11As in [28], m̄ is accepted when ε < (0.05 ∗ m̄), where ε = (1.96 ∗
σ)/
√
k. σ is standard deviation. k is the number of graphs used. 1.96, from

the tables for standard normal distribution for 0.975, gives the 95% confidence
coefficient.



As with mmin and mmax, the mcount and msum aggre-
gates are monotonic w.r.t. set-containment and can be used
in recursive rules. When viewed as a sequence, the values
produced by mcount and msum are monotonic. The mcount
and msum aggregate functions map an input set or multiset,
we will call G, to an output set, we will call D. Elements g
∈ G have the form (J,NJ), where NJ indicates the partial
count/sum contributed by J . Note, J maps to T and NJ maps
to PT in the definition of the aggregate term above. Now,
given G, for each element g ∈ G, if NJ > NJprev

, where
NJprev

is the memorized previous count (sum) for J or 0 if no
previous count (sum) for J exists, mcount (msum) computes
the count (sum) for G by summing the maximum partial count
(sum) NJ for all J . Since only the maximum NJ for each
J is summed, no double counting (summing) occurs. Lastly,
msum only computes with positive numbers, thereby ensuring
its monotonicity.

A. Running Example

Example 2 is the DeAL program to count the paths
between pairs of vertices in an acyclic graph. This program
is not expressible with Datalog with stratified aggregation [8].
We will use Example 2 as our running example for mcount
to explain monotonic counting in DeAL.

Example 2: Counting Paths in a DAG
r1 . cpaths(X, Y, mcount〈(X, 1)〉)← edge(X, Y).
r2 . cpaths(X, Y, mcount〈(Z, C)〉)← cpaths(X, Z, C), edge(Z, Y).
r3 . countpaths(X, Y, max〈C〉) ← cpaths(X, Y, C).

In Example 2, r1 counts each edge as one path between its
vertices. In r2, any edge(Z, Y) that extends from a computed
path count cpath(X, Z, C) establishes there are C distinct paths
from X to Y through Z. The mcount〈(Z, C)〉 aggregate in the
head sums the count of paths from X to Y through every Z to
produce the count from X to Y. Lastly, r3 indicates only the
maximum count for each path X, Y in cpaths is desired. As
explained in Section IV-D, r3 does not have to be evaluated.

Counting Paths By Example. Next, we walk through an eval-
uation of Counting Paths in Example 2 using EMSN to further
explain mcount; this explanation is easily generalizable to
msum. The edge facts in Fig. 12 are the example dataset.

First, r1 in Example 2 is evaluated and results in the six
cpaths derivations as shown in the Fig. 13. Each cpaths
fact has a count of 1 indicating one path between each pair
of vertices connected by edge facts. Displayed in the right
column of Fig. 13 is the memorized partial count (recall
(J,NJ)) for each group. For example, in the first derivation,
J=a, NJ=1, (a, 1) is memorized for group (a, b).

Facts
edge(a, b).

edge(a, c).

edge(a, d).

edge(b, c).

edge(b, d).

edge(c, d).

Fig. 12. Facts

r1 Successful Derivations Partial Count
cpaths(a, b, 1)← edge(a, b). (a, 1) for (a, b)
cpaths(a, c, 1)← edge(a, c). (a, 1) for (a, c)
cpaths(a, d, 1)← edge(a, d). (a, 1) for (a, d)*
cpaths(b, c, 1)← edge(b, c). (b, 1) for (b, c)
cpaths(b, d, 1)← edge(b, d). (b, 1) for (b, d)
cpaths(c, d, 1)← edge(c, d). (c, 1) for (c, d)

Fig. 13. Derivations of Example 2, r1 evaluation

r2 Successful Derivations Partial Count
cpaths(a, c, 2)← cpaths(a, b, 1), edge(b, c). (b, 1) for (a, c)
cpaths(a, d, 2)← cpaths(a, b, 1), edge(b, d). (b, 1) for (a, d)*
cpaths(a, d, 4)← cpaths(a, c, 2), edge(c, d). (c, 2) for (a, d)*
cpaths(b, d, 2)← cpaths(b, c, 1), edge(c, d). (c, 1) for (b, d)

Fig. 14. Derivations of Example 2, r2 - Iteration 1

EMSN evaluates the recursive r2 rule from Example 2
using the cpaths derived by r1. Fig. 14 shows the successful
derivations performed by r2. As each cpaths fact is derived, it
replaces the previous fact for the group (i.e. cpaths(a, c, 2) re-
places cpaths(a, c, 1)). Note the derivation of cpaths(a, d, 2)
from joining cpaths(a, b, 1) and edge(b, d). It represents a
count of two for (a, d), even though the rule body contributed
only one path count. However, looking at the *-ed entry in
Fig. 13, we see a partial count of (a, 1) towards (a, d) was
accrued during evaluation of r1. Therefore, when computing
the new count for (a, d), (a, 1) and the newly derived (b, 1)
are summed to result in cpaths(a, d, 2). Next, we observe the
benefits of using EMSN with the derivation of cpaths(a, d, 4).
Since cpaths(a, c, 2) existed even though it was derived this
iteration, it was used and successfully joined with edge(c, d).
Then, the partial counts for (a, d), which are (a, 1), (b, 1),
and (c, 2), are summed to produce cpaths(a, d, 4). Finally,
with no new facts produced after those in Fig. 14, a fixpoint
is reached, and since there is no need to evaluate r3 (Section
IV-D) we have our result.

VII. MCOUNT AND MSUM IMPLEMENTATION

In this section, we present implementation details for
the mcount and msum aggregates. We use definitions from
Section VI (e.g., G). Note, G is a single group produced
from the implicit group-by for a distinct assignment of K, the
zero or more group-by arguments. We will also refer to the
TupleStore descriptions from Section IV-B. Lastly, although
we use mcount to present our efficient count/sum technique,
this discussion is generalizable to msum.

For mcount and msum, we use an approach based on
delta-maintenance (∆-Maintenance) techniques. Recalling our
explanation for mcount in Section VI, given a new partial
count NJ > NJprev

, mcount will sum all maximum partial
counts to compute the new total count for G. However,
rather than recompute the total count, we can instead use ∆-
Maintenance to increase N (the current total count for G) by
NJ −NJprev and put the updated count, now the total current
count for G, into output set D. This produces the same result
as if the maximum partial count NJ for all J are summed
to produce the total count N for G, however avoids the re-
summation of all NJ with each greater NJ . This requires
memorizing both N for G and NJ for all J .

TABLE III. STORAGE DESIGN SCHEMAS

Name Schema Indexes
Double (K, N) | (K, T, PT) K | (K, T)
List (K, N,List [(T, PT)]) K

B+Tree (K, N,B+Tree[(T, PT)]) K

Hashtable (K, N,Hashtable[(T, PT)]) K



A. Storage Designs

Table III displays storage designs we investigated for
mcount and msum. Here we use N to indicate the current
count/sum for the group-by arguments (K). As in Section VI,
each T contributes a partial count/sum PT towards a distinct
assignment of K (group).

Double uses two relations, one relation (K, N) indexed on K
to store tuples containing the group’s total aggregate value and
a second relation (K, T, PT) indexed on (K, T) to store the partial
count PT for each distinct assignment of (K, T). Early testing
showed Double using UHT without ∆-Maintenance taking 2-5
times longer to execute than with ∆-Maintenance.

We investigated designs using KeyValue type columns as
a more efficient way of managing (T, PT) pairs. We developed
three single relation designs (K, N, KeyValue[(T, PT)]), where
N is the total count for K and KeyValue[(T, PT)] is a reference
to the tuple’s own KeyValue-type data structure. The relation
is indexed on K and each group has a single tuple. The
KeyValue-types each represent a different retrieval time com-
plexity; a List (O(n)) type, a B+Tree (O(log(n))) type, and a
Hashtable(O(1)) type. Hashtable is based on Linear Hashing
and stores the hashed key in the bucket to avoid rehashing.
B+Tree stores keys (T) in internal and leaf nodes and non-key
attributes (PT) in leaf nodes, and uses linear search. Lastly,
List stores (T, PT) pairs ordered by T and uses a linear search.
These are main memory structures, so designs attempt to limit
the number of objects (e.g., List uses byte arrays). KeyValue
designs use ∆-Maintenance.

For the designs shown in Table III, DeALS supports List,
HashTable and B+Tree with B+AT and all designs with UHT
indexed as shown. For example, using r1, r2 from Example 2,
with B+Tree, the B+AT would have X, Y as keys and each entry
in a leaf would have the current total count N and a reference
to a B+Tree KeyValue-type to store (T, PT) pairs. This design
is essentially a B+Tree of B+Trees.

VIII. MCOUNT AND MSUM PERFORMANCE ANALYSIS

Configuration. B+Tree TupleStores and indexes, B+AT and
the B+Tree KeyValue design were configured with 256 bytes
allocated for keys in each node (internal and leaf). The
Hashtable KeyValue design used a directory and segment size
of 256, 16 initial buckets and load factor of 10.

A. Statistical Analysis of Evaluation Methods

We also perform the statistical analysis described in Section
V-C comparing the evaluation of Counting Paths (Example
2) using EMSN to Counting Paths using Semi-naive. The
experiment uses randomly generated DAGs of 100-250 vertices
(increments of 50) and edge probability between 0.1 and
0.9 (increments of 0.1). EMSN and Semi-naive use the same
sequence of graphs.

Fig. 15(a) and Fig. 15(b) show the results of the analysis.
Each point on a line represents the ratio of Semi-naive to EMSN
for number of derived facts (Fig. 15(a)) or number of δ facts
(Fig. 15(b)) for the size of the graph indicated by the line and
edge probability indicated by the x-axis. For example, in Fig.
15(b), Semi-naive produces more than three times as many δ
facts as EMSN for graphs of 200 and 250 vertices starting at
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Fig. 15. Ratio Semi-naive/EMSN Derivations - Counting Paths

0.2 (20%) edge probability. Fig. 15(a) and Fig. 15(b) show that
for the test graphs, Counting Paths using Semi-naive derives
1.94 to 3.48 times more facts than EMSN. As edge probability
increases, so does the ratio between Semi-naive and EMSN
because the higher edge probability allows EMSN to derive
and use facts earlier, which prunes the search space faster.

B. Storage Design Evaluation

This experiment tests how each of the storage designs
presented in Section VII-A performed on DAGs. Fig. 16 shows
the (geometric) average execution time and memory utilization,
along with minimum and maximum values, on 45 random 250-
vertex DAGs (5 graphs for each edge probability from 0.1 to
0.9) for each design. In Fig. 16 results are shown in left-to-right
order from worst to best average execution time performance.

D1: Double (B+Tree)
D2: Double(UHT)
D3: List (UHT)
D4: Hashtable (UHT)
D5: B+Tree (UHT)
D6: HashTable (B+AT)
D7: List (B+AT)
D8: B+Tree (B+AT)
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Fig. 16. mcount and msum Storage Design Performance

Recall the TupleStore descriptions from Section IV-B and
storage designs from Section VII-A. D2 is the Double design
as described in Table III executed using UHT with B+Tree
indexes. D1 is Double using a B+Tree TupleStore for the
(K, T, PT) relation12. D3-D5 and D6-D8 are KeyValue designs
executed using UHT and B+AT, respectively. In Fig. 16 we
see D6-D8, the three B+AT KeyValue designs, have the best
execution time performance. D7 and D8 have the lowest
average execution time performance with B+Tree having better
maximum (51s vs. 62s) execution time. Compared with D7,
D8 has slightly better memory average utilization (969MB
vs. 989MB) but lower maximum memory utilization (1.4GB
vs. 2GB). Note, D1 and D2 have lowest average memory
utilization but their average execution times are nearly twice
that of D7 and D8. Of the designs, D8, the B+Tree design using
B+AT, best balances good average execution time performance
with good average memory utilization.

12In Double, the (K, T, PT) relation will contain many times more tuples
than the (K, N) relation (still UHT), so we focused on optimizing the larger.



C. Discussion

Finding other systems to perform an experimental compar-
ison with mcount and msum proved challenging. Support in
Datalog implementations for count and sum aggregates that
can be used in recursion is not as mature as that of min
and max aggregates. Using LogicBlox version 4, we were
able to execute the Counting Paths program but experienced
similar slow performance as with APSP (Section V-A). Using
SociaLite, we were unable to execute the Counting Paths pro-
gram, and BOM queries such as subparts explosion, produced
results different from ground truth. Lastly, we were able to
execute a version of the Counting Paths program using DLV,
but again the results were different from ground truth.

IX. ADDITIONAL DeAL PROGRAMS

This section includes additional programs to show DeAL’s
expressiveness and support for a variety of applications. More
examples are found in [29] and on the DeALS website13.

Example 3: How many days until delivery?
r1 . delivery(Part, mmax〈Days〉) ← basic(Part, Days, ).
r2 . delivery(Part, mmax〈Days〉) ← assb(Part, Sub, ),

delivery(Sub, Days).
r3 . actualDays(Part, max〈Days〉)← delivery(Part, Days).

Example 4: What is the maximum cost of a part?
r1 . cost(Part, msum〈(Part, Cost)〉)← basic(Part, , Cost).
r2 . cost(Part, msum〈(Sub, Cost)〉) ← assb(Part, Sub, Num),

cost(Sub, Scost),
Cost = Scost ∗ Num.

r3 . totalCost(Part, max〈Cost〉) ← cost(Part, Cost).

Example 3 and 4 are the Bill of Materials (BOM) program
for finding the days required to deliver a part and the program
for computing the max cost of a part from the cost of its
subparts, respectively. The assb predicate denotes each part’s
required subparts and number required and basic denotes the
number of days for a part to be received and the part’s cost.

Example 5: Viterbi Algorithm
r1 . calcV(0, X, mmax〈L〉)← s(0, EX), p(X, EX, L1), pi(X, L2),

L = L1 ∗ L2.
r2 . calcV(T, Y, mmax〈L〉)← s(T, EY), p(Y, EY, L1), T1 = T− 1,

t(X, Y, L2), calcV(T1, X, L3),
L = L1 ∗ L2 ∗ L3.

r3 . viterbi(T, Y, max〈L〉)← calcV(T, Y, L).

Example 5 is the Viterbi algorithm for hidden Markov
models. Four base predicates are used — t denotes the
transition probability L2 from state X to Y; s denotes the
observed sequence of length L+1; pi denotes the likelihood
L2 that X is the initial state; p denotes the likelihood L1 that
state X (Y) emitted EX (EY). r1 finds the most likely initial
observation for each X. r2 finds the most likely transition for
observation T for each Y. r3 finds the max likelihood for T, Y.

Example 6: Max Probability Path
r1 . reach(X, Y, mmax〈P〉)← net(X, Y, P).
r2 . reach(X, Y, mmax〈P〉)← reach(X, Z, P1), reach(Z, Y, P2),

P = P1 ∗ P2.
r3 . maxP(X, Y, max〈P〉) ← reach(X, Y, P).

13DeALS website, http://wis.cs.ucla.edu/deals.

Example 6 is the non-linear program for computing the
max probability path between two nodes in a network. The
net predicate denotes the probability P of reaching Y from X.

X. FORMAL SEMANTICS

So far we have worked with the operational semantics of
our monotonic aggregates and shown how this is conducive
to the expression of algorithms by programmers. While most
users only need to work at this level, it is important that we also
show how this coincides with the formal semantics discussed in
those two DatalogFS papers [17], [18], inasmuch as properties
such as least fixpoint and stable models will follow from it.

We start with the example inspired by [9] for determining
who will come to a party. In this program, some people will
come to the party for sure, whereas others only join when at
least three of their friends are coming. Example 7 is the DeAL
version of this program. The idea is that with cntComing each
person watches the number of their friends that are coming
grow, and once that number reaches three, the person will
then come to the party too. To count the number of friends,
rather than the final count used in [9], we can use the mcount
continuous count aggregate that enumerates all the integers
until the actual maximum, i.e. it returns I , the actual maximum,
representing the integer interval [1, I].

Example 7: Who will come to the party?
r1 . coming(X)← sure(X).
r2 . coming(X)← cntComing(X, N), N ≥ 3.
r3 . cntComing(Y, mcount〈(X, 1)〉)← friend(Y, X), coming(X).

Here the use of mcount over count is justified on the
grounds of performance, since it is inefficient to count all
friends of people if only three are required. More importantly
though, while count is non-monotonic (unless we use the
special lattices suggested by [9]), mcount is monotonic in
the lattice of set containment used by the standard Datalog.
So no ad hoc semantic extension is needed and concepts and
techiques such as magic sets, perfect models and stable models
can be immediately generalized to programs with mcount.

A. DeAL Interval Semantics

The lessons learned with mcount tell us that we can derive
the monotonic counterpart of an aggregate by simply assuming
that it produces an interval of integer values, rather than just
one value. In the following we (i) apply this idea to max and
min to obtain mmax and mmin, and then (ii) generalize these
monotonic aggregates to arbitrary numbers, and show that
the least fixpoint computation under this formal interval-based
semantics can be implemented using the Semi-naive semantics
used in Section II under general conditions that hold for all
our examples. Due to space limitations the discussion is kept
at an informal level: formal proofs are given in [17], [18].

Before we introduce DeAL’s interval semantics, consider
the following example of interval semantics for counting,
based on the DatalogFS interval semantics, depicted in Fig.
17(a). If r2 in Example 2 produced cpaths(a, b, 3) and
then cpaths(a, b, 4), we cannot sum the aggregate values to
get a new count for group (a, b). Instead, with the counts
for cpaths(a, b, 3) and cpaths(a, b, 4) represented by [1, 3]
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Fig. 17. DeAL Interval Semantics

and [1, 4], respectively, [1, 3] ∪ [1, 4] = max(3, 4) = 4. Thus
cpaths(a, b, 4) represents (a, b)’s count.

+/- Rational Numbers. Computations on numbers in mantissa
* exponent representation is tantamount to integer arithmetic
on their numerators over a fixed large denominator. For in-
stance, for floating point representations, the smallest value of
exponent supported could be −95, whereby every number can
be viewed as the integer numerator of a rational number with
denominator 1095. However, because of the limited length of
the mantissa, this numerator will often be rounded-off — a
monotonic operation that preserves the existence of a least-
fixpoint semantics for our programs [17]. Thus floating-point-
type representation in programming languages can be used
without violating monotonicity [17], [18].

Now, say Lb represents the lower bound for all negative
numbers supported by the system architecture. We can use the
interval [Lb,N ] to represent any number regardless of its sign.
The result of unioning the sets representing these numbers
is a set representing the max, independent of whether this is
positive or negative. Using Fig. 17(b) as an example, with
N1 and N2 represented by [Lb,N1] and [Lb,N2], respectively,
then [Lb,N1] ∪ [Lb,N2] represents the larger of the two, i.e.
max(N1, N2) = N2. Thus, we can support negative numbers.

Minimum. Now, say Ub represents the upper bound for all
positive numbers supported by the system architecture. We can
represent the set of all numbers between N and Ub, i.e. the
interval [N,Ub], as the number N . Observe that a number
smaller than N is represented by an interval that contains the
interval [N,Ub]. As before, if we take a union of two or more
such representations, the result is the largest interval. Using
Fig. 17(c) as an example, with N1 and N2 represented by
[N1, Ub] and [N2, Ub], respectively, then [N1, Ub] ∪ [N2, Ub]
represents the smaller of the two, i.e., min(N1, N2) = N2.

As another example of these semantics, consider the first
derivation in Fig. 2 – spaths(a, c, 2) was derived because
the previous value for (a, c) was 3. In the interval semantics,
spaths(a, c, 2) would be represented as [2, Ub], and 3 as
[3, Ub], thus we have [2, Ub] ∪ [3, Ub] is min(2, 3) = 2.

B. Normal Programs

DeAL programs that only use monotonic arithmetic and
monotonic boolean (comparison) functions on values produced
by monotonic aggregates will be called normal14. All practical
algorithms we have considered only require the use of normal
DeAL programs. Two classes of normal programs exist.

Class 1. This class of normal programs uses monotonic
aggregates to compute the max (min) values for use outside
the recursion (e.g., to return the facts with the final max (min)

14The compiler can easily check if a program is normal when the program
contains only arithmetic and simple functions (e.g. addition, multiplication).

values). Programs in this class include Examples 1 - 6 which
are expressed using a stratified max (min) aggregate to select
the max (min) value produced by the recursive rules when a
fixpoint is reached. Examining the intermediate results of Class
1 programs: at each step of the fixpoint iteration, we have (i)
the max (min) value and (ii) values less than the max value
(greater than the min value). However, we do not need (ii), as
long as the values in the head are computed from those in the
body via an arithmetic function that is monotonic.

Class 2. Values produced by monotonic aggregates in Class 2
normal programs are not passed to rule heads, but are tested
against conditions in the rule body. Here too, as long as
the functions applied to the values are monotonic, rules are
satisfied if and only if they are satisfied for the max (min)
values. Example 7 is a Class 2 normal program.

C. Normal Program Evaluation

Recall the algorithm for MASN in Fig. 6. Let us call L the
set produced by TE(M) or TR(δS) and F the set produced
from applying getLast() to L. For Semi-naive, δS will be L,
whereas for MASN, δS will be F . Let W = L − F . W = ∅
when, for facts of monotonic aggregate predicates, each group
with facts derived during the iteration has only one fact. For
an iteration, if W = ∅, MASN evaluates the program the same
as Semi-naive. Otherwise, W contains facts that will not lead
to final answers for Class 1 normal programs and for Class
2 normal programs, any condition satisfied (in a rule body)
by a fact in W will also be satisfied by the fact of the same
group in F . Thus, MASN does not need to evaluate W . In the
next iteration, Semi-naive will derive all of the same facts as
MASN, but also derive facts evaluating W . We have already
established that these facts, because they were derived from
W , will not lead to final answers, and thus MASN does not
need to derive facts with these either.

Theorem 10.1: A normal program with monotonic aggre-
gates evaluated using MASN will produce the same result as
that program evaluated using Semi-naive.

Recall the algorithm for EMSN in Fig. 8. Assume we are
evaluating a normal program with Semi-naive. Let us call
KSN the set of facts used in derivations (∪ of all δS) by
Semi-naive. Now assume we are evaluating the same normal
program with EMSN. Let us call KEMSN the set of all facts
used in derivations by EMSN, which means KEMSN contains
facts that were retrieved from the aggregate’s relation, meaning
they had the current value for the group at the time the fact
was used in a derivation. Now, let C = KSN − KEMSN .
If C = ∅, EMSN evaluates the program the same as Semi-
naive. Otherwise, C contains facts that were not used by EMSN
because at the time of derivation, the values in the aggregate’s
relation for those facts’ groups were greater (mmax, mcount,
msum) or lesser (mmin) than the aggregate value in the fact.
We know KSN ∩KEMSN = KEMSN and KEMSN ⊂ KSN

because EMSN will ignore facts to use in derivations that Semi-
naive will use in derivations, but EMSN will not use different
facts than Semi-naive. Stated another way, Semi-naive will
attempt derivations with all facts EMSN attempts derivations
with. Therefore, for Class 1 normal programs, facts in C
are not going to lead to final answers. For Class 2 normal
programs, any condition satisfied (in a rule body) by a fact in



C would have also been satisfied by the value that was instead
used. EMSN does not need to evaluate C. We have:

Theorem 10.2: A normal program with monotonic aggre-
gates evaluated using EMSN will produce the same result as
that program evaluated using Semi-naive.

XI. ADDITIONAL RELATED WORK

We have previously discussed the contributions of many
works on supporting aggregation in recursion including [2],
[9], [23]. For extrema aggregates, [25] proposes rewriting
programs by pushing the aggregate into the recursion and
Greedy Fixpoint evaluation to select the next min/max value to
execute. Another approach proposes using aggregate selections
to identify irrelevant facts that are to be discarded by an ex-
tended version of Semi-naive evaluation [26]. Nondeterministic
constructs and stable models have been proposed to define
monotone aggregates [27]. The DRed [30] algorithm incremen-
tally maintains recursive views that can include negation and
aggregation. The BloomL distributed programming language
[16] uses logical monotonicity via built-in and user-defined
lattice types to support eventual consistency.

XII. CONCLUSION AND FUTURE WORK

With the renaissance of Datalog, the monotonicity property
has been placed at the center of its ability to provide a
declarative treatment of distributed computation [31]. In this
paper, we have shown how this property can be extended
to the aggregate involved in recursive computations while
preserving the syntax, semantics, and optimization techniques
of traditional Datalog. The significance of this result follows
from the fact that this problem had remained long unsolved,
and that many new applications can be expressed with the
proposed extensions that make them amenable to parallel
execution on multiprocessor and distributed systems. Lines of
future work include i) supporting advanced KDD algorithms
in DeALS, ii) parallel/distributed extensions of techniques
from this paper and iii) extending DeALS with highly-parallel
evaluation techniques for recursive queries [32].
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