
CS32 Discussion
Week 9

Muhao Chen

muhaochen@ucla.edu

http://yellowstone.cs.ucla.edu/~muhao/

1

mailto:muhaochen@ucla.edu
http://yellowstone.cs.ucla.edu/~muhao/


Outline

•Binary Search Tree

•Heap

•Hash Table

2



Binary Search Tree

3



4



5



6

Average



7



8



9



10



FindMax

ItemType findMax(Node *node) {

if (node -> right == NULL) return node->val;

return findMax(node -> right);

}

//We assume the root is not NULL.

11



FindMin

ItemType findMin(Node *node) {

if (node -> left == NULL) return node->val;

return findMax(node -> left);

}

12



13



14



Other Representative Trees

• B+-Tree (CS143)

• R-Tree (Spatial Index Tree)

• Quad-tree

15



Heaps

16



17



18

Body structure of a 
Priority Queue



19



20



21



22



23



24

(pos – 1) / 2;

(pos – 1) / 2;

&



25



26



27



28



29



30

pos * 2 + 1



Cost of each operation of a max-heap

•findMax --- O(1)

• insert --- O(logn)

•deleteMax --- O(logn)

31



32



33



34



35



36



Question: top-k query

•How can we efficiently find k largest numbers 
from n numbers? (n>>k, but k is not small)
•Sort?
•Scan (i.e. linear search) k times?

•Use heap (max-heap or min-heap?)
•Min-heap!
•Pop-out the min from heap and insert a number, 

if it’s larger than min.
•O(nlogk)

37

Too costly!
O(k*n) what 

if large k?



Question: merge k sorted linked lists

•If we have k sorted linked lists.
• Each list has n nodes. (Thus totally nk nodes)

•What’s the efficient way to merge them into 
one sorted list? (hint: O(n*klogk))

38



Question: merge k sorted linked lists

• Inefficient solution: Brute Force

•Keep linear searching the k heads and fetching the 
smallest until all lists are empty

•O(nk2)

39



Question: merge k sorted linked lists

•Solution #1: Use minHeap.
• Insert the head of each list to the heap.
• Each time we pop-out a node from the heap and 

append it to the result list, insert the next node of that 
node from its list to the heap.
• Do this until heap is empty.

•Complexity:
• Each node takes O(logk) to be inserted in the heap, 

O(logk) to extract and O(1) to append to result.
• nk nodes => O(nklogk)

40



Question: merge k sorted linked lists

•Solution #2: it is actually merge sort.
•Merge each pair of sorted lists. k sorted lists become 

k/2 sorted lists.
• Again, merge each pair of sorted lists. k/2 becomes k/4.
•…
• Do this until everything is merged into 1 list.

•Complexity:
• Each stage of merge (e.g. from k lists to k/2 lists) takes 

O(nk). (nk times of comparison and append)
• Altogether there’re O(logk) stages of merge. => 

O(nklogk)

41



Hash-table

42



43



FNV-1 Hash Function

• A good hash function from string to int.

unsigned int FNV-1(string s) {

unsigned int h = 2166136261U;
for (int k = 0; k != s.size(); k++)

{
h += s[k];
h *= 16777619;

}

return h;

}

44



45



46



47



Hash Table

• Closed hashing:
• Fixed number of buckets

• All operations are O(n) with an extremely small constant of 
proportionality
• (s.t. it can still beat a BST when n is large)

• Open hashing:
• Load factor = #entries / #buckets

• Changes hash function and makes available more buckets when load 
factor reaches certain margin (say, usually about 0.7)

• O(1) for all operations

48



49



Question: Count top k frequent words in a 
document

• We have n words in a document, whose vocabulary size is v
(i.e. v different words).

• The most efficient way to count the frequency for all words 
takes O(____) time complexity.

• After getting the frequency of each word, the most efficient 
way to get the top k frequent words takes O(____) time 
complexity.

• Totally the entire procedure takes O(____).

50



Question: Count top k frequent words in a 
document

•What is the efficient way?

•How do we record #occurrence for each word?
•Hash table. O(1) to update a count when we see a 

word. Totally O(n)
•Otherwise O(nlogv) if we use a tree. (v: size of 

vocabulary)

•How do we get the words with top-k frequency?
•Again, min-heap + one pass scan. O(vlogk)

•Totally O(n + vlogk)

51



Bugs in your software are actually special 
features :)

52


