CS32 Discussion Week 9

Muhao Chen

muhaochen@ucla.edu
http://yellowstone.cs.ucla.edu/~muhao/

Outline

- Binary Search Tree
- Heap
- Hash Table

Binary Search Tree

Binary Search Tree

- At all nodes:

- All nodes in the left subtree have smaller values than the current node's value
- All nodes in the right subtree have larger values than the current node's value
- Which traversal method should you use to:
- print values in the increasing order?
- print values in the decreasing order?

Insert

Insert

- Average time complexity?
- as many steps as the height of the tree
- full tree: $n=2^{h+1}-1 \approx 2^{h+1}$ nodes
$-h \approx \log _{2} n-I$

- Roughly, it takes $\mathrm{O}(\log \mathrm{N})$.

Search

```
Node* search(const Node *node, ItemType value)
{
{
if (node == NULL)
        return NULL;
if (node->val == value)
        return node;
else if (node->val > value)
    return search(node->left, value);
else
    return search(node->right, value);
}
```


Removal

- A little tricky!
- General strategy:
- Find a replacement.
- Delete the node.
- Replace.

- Case-by-case analysis
- Case I: the node is a leaf (easy)
- Case 2: the node has one child
- Case 3: the node has two children

Case 3

Use in-order traversal to identify these nodes

findMax

ItemType findMax(const Node *node)
\{

FindMax

```
ItemType findMax(Node *node) {
    if (node -> right == NULL) return node->val;
    return findMax(node -> right);
}
```

//We assume the root is not NULL.

FindMin

```
ItemType findMin(Node *node) {
    if (node -> left == NULL) return node->val;
    return findMax(node -> left);
}
```


valid

bool valid(const Node *node) \{

- At all nodes:
- All nodes in the left subtree have smaller values than the current node's value
- All nodes in the right subtree have larger values than the current node's value


```
bool valid(const Node *node)
{
    if (node == NULL)
        return true;
```

 if (node->left != NULL \&\& findMax(node->left) > node->val)
 return false;
 if (node->right != NULL \&\& findMin(node->right) < node->val)
 return false;
 return valid(node->left) \&\& valid(node->right);
 \}

Other Representative Trees

- B+-Tree (CS143)
- R-Tree (Spatial Index Tree)
- Quad-tree

Heaps

Heaps

- A heap is a
- complete binary tree
- every node carries a value greater than or equal to its children's (maxHeap).
- usually implemented as an array

9	7	6	1	5	2

parent $=(\mathrm{i}-\mathrm{I}) / 2$
Left child: $2 * \mathrm{i}+1$

Right child: 2 * i + 2

Heaps: operations

- 3 operations for heaps
- findMax (search)
- insertNode (insert)
- deleteMax (remove)

9	7	6	1	5	2

Body structure of a Priority Queue

findMax

- What do you think?

insertNode

- Not so trivial
- We first add the new node and fix it

insertNode

I. Add the new node to the tail.
2. Ask:

- Is the new value greater than its parent?
- If so:??
- Else:??

9	7	6	1	5	2	8

insertNode

- What is the index of node i's parent in the array?

9	7	8	1	5	2	6

insertNode

- What is the index of node i's parent in the array?
- parent $=(i-1) / 2$

9	7	8	1	5	2	6


```
insertNode(int newVal, int heap[], int&size)
{
    heap[size] = newVal; // assume enough space
    pos = size;
    parent = (pos-1)/2;
    while (parent >= 0 and heap[pos] > heap[parent])
    {
        swap(heap[pos], heap[parent]);
        pos = parent;
        parent = (pos-1)/2;
    }
    size++;
}
```


insertNode

- Running time?

9	7	8	1	5	2	6

insertNode

- Running time?
- proportional to the height of the tree: $\mathbf{O}(\log n)$

9	7	8	1	5	2	6

deleteMax

- Again, take the action first and fix it.

Fill in the void first.

deleteMax

- Now compare the values of the two children, take the greater of the two (why?), and swap.
- What are the indices of
- Left child:
- Right child:
of the node i?

deleteMax

- Now compare the values of the two children, take the greater of the two (why?), and swap.
- What are the indices of
- Left child: $2 * i+1$
- Right child: 2 *i+2
of the node i ?

```
deleteMax(int heap[], int size)
{
    heap[0] = heap[size-1];
    size--;
    pos = 0;
    left_child = 1;
    while (left_child < size) // if not a leaf
    {
    right_child = left_child + 1;
    // if right child exists
    if (right_child < size &&
        heap[right_child] > heap[left_child])
    {
        swap(heap[right_child], heap[pos]);
        pos = right_child;
    }
    // if only left child exists
    else if (heap[left_child] > heap[pos])
    {
        swap(heap[left_child], heap[pos]);
        pos = left_child;
    }
    else
        break;
    left_child = pos*2+1
}
}
```


Cost of each operation of a max-heap

- findMax --- O(1)
-insert --- O(logn)
- deleteMax --- O(logn)

Heapsort

- Can you use a heap to sort a set of elements?

Heapsort

- Can you use a heap to sort a set of elements?
- Insert all elements into a heap
- Extract the maximum element from the heap one by one

Heapsort

- Can you use a heap to sort a set of elements?
- Insert all elements into a heap
- Extract the maximum element from the heap one by one
- Running time?

Heapsort

- Can you use a heap to sort a set of elements?
- Insert all elements into a heap
- Extract the maximum element from the heap one by one
- Running time?

Inserting n items: $n \times O(\log n)=O(n \log n)$
Extracting n items: $n \times O(\log n)=O(n \log n)$
$O(n \log n)+O(n \log n)=O(n \log n)$

In-place Heapsort

build the maxHeap

extract

4	3	1	2	5
3	2	1	4	5
2	1	3	4	5
1	2	3	4	5
1	2	3	4	5

\square part of the maxHeap

Question: top-k query

- How can we efficiently find k largest numbers from n numbers? ($n \gg k$, but k is not small)
-Sort? Too costly!
- Scan (i.e. linear search) k times?

O(k*n) what if large k ?

- Use heap (max-heap or min-heap?)
- Min-heap!
- Pop-out the min from heap and insert a number, if it's larger than min.
- O(nlogk)

Question: merge k sorted linked lists

- If we have k sorted linked lists.
- Each list has n nodes. (Thus totally $n k$ nodes)
-What's the efficient way to merge them into one sorted list? (hint: O($n^{*} k \log k$))

Question: merge k sorted linked lists

- Inefficient solution: Brute Force
- Keep linear searching the k heads and fetching the smallest until all lists are empty
- $O\left(n k^{2}\right)$

Question: merge k sorted linked lists

- Solution \#1: Use minHeap.
- Insert the head of each list to the heap.
- Each time we pop-out a node from the heap and append it to the result list, insert the next node of that node from its list to the heap.
- Do this until heap is empty.
- Complexity:
- Each node takes O (logk) to be inserted in the heap, $O(\log k)$ to extract and $O(1)$ to append to result.
- nk nodes => O(nklogk)

Question: merge k sorted linked lists

- Solution \#2: it is actually merge sort.
- Merge each pair of sorted lists. k sorted lists become $k / 2$ sorted lists.
- Again, merge each pair of sorted lists. $k / 2$ becomes $k / 4$.
- ...
- Do this until everything is merged into 1 list.
- Complexity:
- Each stage of merge (e.g. from k lists to $k / 2$ lists) takes $\mathrm{O}(n k)$. ($n k$ times of comparison and append)
- Altogether there're O(logk) stages of merge. => O(nklogk)

Hash-table

Hash Functions

- Hashing
- Take a "key" and map it to a number

- A requirement for hash function H : should return the same value for the same key.
- A good hash function
- spreads out the values: two different keys are likely to result in different hash values
- computes each value quickly

FNV-1 Hash Function

- A good hash function from string to int. unsigned int FNV-1(string s) \{ unsigned int $\mathrm{h}=2166136261 \mathrm{U}$; for (int k = 0; k != s.size(); k++) \{
h += s[k];
h * = 16777619;
\}
return h;
\}

Hash Table

Hash Table

Hash Table

- Running time
- Insert?
- Remove?
- Search?

Hash Table

- Closed hashing:
- Fixed number of buckets
- All operations are $O(n)$ with an extremely small constant of proportionality
- (s.t. it can still beat a BST when n is large)
- Open hashing:
- Load factor = \#entries / \#buckets
- Changes hash function and makes available more buckets when load factor reaches certain margin (say, usually about 0.7)
- O(1) for all operations

Hash Table

- Running time
- Insert? O(I)
- Remove? O(I)
- Search? O(I)
- Looks great, but what are the limitations?

Question: Count top k frequent words in a document

- We have n words in a document, whose vocabulary size is v (i.e. v different words).
- The most efficient way to count the frequency for all words takes O(\qquad) time complexity.
- After getting the frequency of each word, the most efficient way to get the top k frequent words takes O (\qquad) time complexity.
- Totally the entire procedure takes O(\qquad

Question: Count top k frequent words in a document

-What is the efficient way?

- How do we record \#occurrence for each word?
- Hash table. O(1) to update a count when we see a word. Totally $O(n)$
- Otherwise $O(n \log v)$ if we use a tree. (v : size of vocabulary)
- How do we get the words with top-k frequency?
- Again, min-heap + one pass scan. O(vlogk)
- Totally $O(n+v / o g k)$

Bugs in your software are actually special features:)

