CS32 Discussion
Week 9

Muhao Chen

muhaocchen@ucla.edu
http://yellowstone.cs.ucla.edu/~muhao/
Outline

• Binary Search Tree
• Heap
• Hash Table
Binary Search Tree
Binary Search Tree

- At all nodes:
 - All nodes in the left subtree have smaller values than the current node’s value
 - All nodes in the right subtree have larger values than the current node’s value

- Which traversal method should you use to:
 - print values in the increasing order?
 - print values in the decreasing order?
void insert(Node* &node, ItemType newVal) {
 if (node == NULL) {
 node = new Node;
 node->val = newVal;
 node->left = node->right = NULL;
 }
 if (node->val > newVal) insert(node->left, newVal);
 else insert(node->right, newVal);
}
Insert

- **Average** time complexity?
 - as many steps as the height of the tree
 - full tree: \(n = 2^{h+1} - 1 \approx 2^{h+1} \) nodes
 - \(h \approx \log_2 n - 1 \)

- Roughly, it takes \(O(\log N) \).
Search

Node* search(const Node *node, ItemType value)
{
 if (node == NULL)
 return NULL;

 if (node->val == value)
 return node;
 else if (node->val > value)
 return search(node->left, value);
 else
 return search(node->right, value);
}
Removal

- A little tricky!
- General strategy:
 - Find a replacement.
 - Delete the node.
 - Replace.
- Case-by-case analysis
 - Case 1: the node is a leaf (easy)
 - Case 2: the node has one child
 - Case 3: the node has two children
Case 3

Use in-order traversal to identify these nodes
ItemType findMax(const Node *node)
{
}

FindMax

ItemType findMax(Node *node) {
 if (node -> right == NULL) return node -> val;
 return findMax(node -> right);
}

//We assume the root is not NULL.
FindMin

ItemType findMin(Node *node) {
 if (node -> left == NULL) return node -> val;
 return findMax(node -> left);
}

valid

bool valid(const Node *node) {

• At all nodes:
 – All nodes in the left subtree have smaller values than the current node’s value
 – All nodes in the right subtree have larger values than the current node’s value

}

bool valid(const Node *node)
{
 if (node == NULL)
 return true;

 if (node->left != NULL && findMax(node->left) > node->val)
 return false;

 if (node->right != NULL && findMin(node->right) < node->val)
 return false;

 return valid(node->left) && valid(node->right);
}
Other Representative Trees

- B+−Tree (CS143)
- R-Tree (Spatial Index Tree)
- Quad-tree
Heaps
Heaps

- A **heap** is a
 - complete binary tree
 - every node carries a value greater than or equal to its children’s (maxHeap).
 - usually implemented as an array

```
9  7  6  1  5  2
```

parent = (i - 1) / 2
Left child: 2 * i + 1
Right child: 2 * i + 2
Heaps: operations

• 3 operations for heaps
 – findMax (search)
 – insertNode (insert)
 – deleteMax (remove)
findMax

• What do you think?
insertNode

- Not so trivial
- We first add the new node and fix it
insertNode

1. Add the new node to the tail.
2. Ask:
 - Is the new value greater than its parent?
 - If so: ??
 - Else: ??

[Diagram of a binary tree with numbers and a sorted list]
insertNode

- What is the index of node i’s parent in the array?
insertNode

- What is the index of node i’s parent in the array?
 - parent = (i - 1) / 2
insertNode(int newVal, int heap[], int& size) {
 heap[size] = newVal; // assume enough space

 pos = size;

 parent = (pos - 1) / 2;

 while (parent >= 0 and heap[pos] > heap[parent]) {
 swap(heap[pos], heap[parent]);
 pos = parent;

 parent = (pos - 1) / 2;
 }

 size++;
}
insertNode

- Running time?
insertNode

- Running time?
 - proportional to the height of the tree: $O(\log n)$
deleteMax

• Again, take the action first and fix it.

• Fill in the void first.
deleteMax

• Now compare the values of the two children, take the greater of the two (why?), and swap.
• What are the indices of
 – Left child:
 – Right child:
 of the node i?
deleteMax

- Now compare the values of the two children, take the greater of the two (why?), and swap.
- What are the indices of
 - Left child: $2 \times i + 1$
 - Right child: $2 \times i + 2$
 of the node i?
deleteMax(int heap[], int size)
{
 heap[0] = heap[size-1];
 size--;

 pos = 0;
 left_child = 1;

 while (left_child < size) // if not a leaf
 {
 right_child = left_child + 1;

 // if right child exists
 if (right_child < size &&
 heap[right_child] > heap[left_child])
 {
 swap(heap[right_child], heap[pos]);
 pos = right_child;
 }
 // if only left child exists
 else if (heap[left_child] > heap[pos])
 {
 swap(heap[left_child], heap[pos]);
 pos = left_child;
 }
 else
 break;

 left_child = pos * 2 + 1
 }
}
Cost of each operation of a max-heap

• findMax --- O(1)
• insert --- O(logn)
• deleteMax --- O(logn)
Heapsort

• Can you use a heap to sort a set of elements?
Heapsort

- Can you use a heap to sort a set of elements?
 - Insert all elements into a heap
 - Extract the maximum element from the heap one by one
Heapsort

• Can you use a heap to sort a set of elements?
 – Insert all elements into a heap
 – Extract the maximum element from the heap one by one

• Running time?
Heapsort

- Can you use a heap to sort a set of elements?
 - Insert all elements into a heap
 - Extract the maximum element from the heap one by one
- Running time?

 Inserting n items: \(n \times O(\log n) = O(n \log n) \)

 Extracting n items: \(n \times O(\log n) = O(n \log n) \)

 \(O(n \log n) + O(n \log n) = \mathcal{O}(n \log n) \)
In-place Heapsort

build the maxHeap

extract

part of the maxHeap
Question: top-k query

• How can we efficiently find k largest numbers from n numbers? ($n \gg k$, but k is not small)
 • Sort? Too costly!
 • Scan (i.e. linear search) k times? $O(k \times n)$ what if large k?

• Use heap (max-heap or min-heap?)
 • Min-heap!
 • Pop-out the min from heap and insert a number, if it’s larger than min.
 • $O(n \log k)$
Question: merge k sorted linked lists

• If we have k sorted linked lists.
 • Each list has n nodes. (Thus totally nk nodes)

• What’s the efficient way to merge them into one sorted list? (hint: $O(n^*k\log k)$)
Question: merge k sorted linked lists

• Inefficient solution: Brute Force
• Keep linear searching the k heads and fetching the smallest until all lists are empty
• $O(nk^2)$
Question: merge k sorted linked lists

• Solution #1: Use minHeap.
 • Insert the head of each list to the heap.
 • Each time we pop-out a node from the heap and append it to the result list, insert the next node of that node from its list to the heap.
 • Do this until heap is empty.

• Complexity:
 • Each node takes $O(\log k)$ to be inserted in the heap, $O(\log k)$ to extract and $O(1)$ to append to result.
 • nk nodes => $O(nk\log k)$
Question: merge k sorted linked lists

• Solution #2: it is actually merge sort.
 • Merge each pair of sorted lists. k sorted lists become $k/2$ sorted lists.
 • Again, merge each pair of sorted lists. $k/2$ becomes $k/4$.
 • ...
 • Do this until everything is merged into 1 list.

• Complexity:
 • Each stage of merge (e.g. from k lists to $k/2$ lists) takes $O(nk)$. (nk times of comparison and append)
 • Altogether there’re $O(\log k)$ stages of merge. => $O(nk\log k)$
Hash-table
Hash Functions

• Hashing
 – Take a “key” and map it to a number

 “David Smallberg” \rightarrow Hash Function H \rightarrow 4531

• A requirement for hash function H: **should return the same value for the same key.**

• A good hash function
 – spreads out the values: two different keys are likely to result in different hash values
 – computes each value quickly
FNV-1 Hash Function

• A good hash function from string to int.

```c
unsigned int FNV-1(string s) {
    unsigned int h = 2166136261U;
    for (int k = 0; k != s.size(); k++)
    {
        h += s[k];
        h *= 16777619;
    }
    return h;
}
```
Hash Table

C → Hash func → 4531

... 4530 4531 4532 4533 ...

D → C

May collide, so make a linked list!

array
Hash Table

• Running time
 – Insert?
 – Remove?
 – Search?

May collide, so make a linked list!
Hash Table

• **Closed hashing:**
 • Fixed number of buckets
 • All operations are $O(n)$ with an extremely small constant of proportionality
 • (s.t. it can still beat a BST when n is large)

• **Open hashing:**
 • Load factor = #entries / #buckets
 • Changes hash function and makes available more buckets when load factor reaches certain margin (say, usually about 0.7)
 • $O(1)$ for all operations
Hash Table

- Running time
 - Insert? $O(1)$
 - Remove? $O(1)$
 - Search? $O(1)$
- Looks great, but what are the limitations?

May collide, so make a linked list!
Question: Count top k frequent words in a document

• We have \(n \) words in a document, whose vocabulary size is \(v \) (i.e. \(v \) different words).

• The **most efficient** way to count the frequency for all words takes \(O(____) \) time complexity.

• After getting the frequency of each word, the **most efficient** way to get the top \(k \) frequent words takes \(O(____) \) time complexity.

• Totally the entire procedure takes \(O(____) \).
Question: Count top k frequent words in a document

• What is the efficient way?

• How do we record #occurrence for each word?
 • Hash table. $O(1)$ to update a count when we see a word. Totally $O(n)$
 • Otherwise $O(n \log v)$ if we use a tree. (v: size of vocabulary)

• How do we get the words with top-k frequency?
 • Again, min-heap + one pass scan. $O(v \log k)$

• Totally $O(n + v \log k)$
Bugs in your software are actually special features :)