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Outline

•Recursion

•Template Classes

•STL Containers
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Quicksort
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void split(double a[], int n, double splitter, int& firstNotGreater, int& firstLess);

void order(double a[], int n)
{

if (n <= 1) return;
int pivot = a[0], ng, less;
split(a, n, pivot, ng, less);
order(a, ng);
order(a + less, ng – less);
return;

}
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Problem: Permutation

•Print out the permutations of a given vector.

•E.g.

• [1,2,3] have the following permutations:

• [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], and [3,2,1].

•void permutation(vector<int>& nums, int start);
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Permutation
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void permutation(vector<int>& nums, int start) {
if (start == nums.size() - 1) {

for(int i=0; i<nums.size(); ++i)
cout << nums[i] << ' ,';    cout << endl;

}
permutation(nums, start + 1);
for (int i=start+1; i<nums.size(); ++i) {

swap(nums[start], nums[i]);
permutation(nums, start + 1);
swap(nums[start], nums[i]);

}
}



Template
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Template Specialization

•What if sometimes, we want a template class with 
certain data type to have its exclusive behaviors?

•E.g., define member function uppercase()
• pair<int> p1;
• pair<char> p2;
•We want to allow p2.uppercase();
•We don’t want to allow p1.uppercase();
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Pass by value for 
ADTs are slow



STL Containers

21



22



23



24



25



26



27



28



begin(), end(), and back()

•begin(): return an iterator that points to the first 
element.

•end(): return an iterator that points to the past-the-
last element 
• past-the-last: a theoretical element to represent the 

place after the last element.

•back(): return an iterator that points to the last
element.
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Insight: List

•How list is implemented: doubly linked list.

•No [] allowed to access elements in List.

•Using iterator to traverse a list is always Safe.

•And: >, >=, <, and <= comparisons are NOT VALID 
for list iterators!
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Insight: Vector

•How vector is implemented: dynamic array.

•We can use [] to access elements in a vector.

•>, >=, <, and <= comparisons are VALID for vector 
iterators.

•But there might be dangerous behaviors on vector 
iterators each time we have performed 
insertion/deletion (incl. push_back()).
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Dangerous Behavior of Vector Iterator 
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int main () {
vector<int> v;
v.push_back(50);
v.push_back(22);
v.push_back(10);

vector<int>::iterator b = v.begin();
vector<int>::iterator e = v.end();
for (int i = 0; i < 100; i++) {

v.push_back(i);
}
while (b != e) {

cout << *b++ << endl;
}

}



Dangerous Behavior of Vector Iterator 

• Insertions and deletions on *vectors*, will possibly 
INVALIDATE any iterators defined on that vector !!!
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Dangerous Behavior of Vector Iterator 

•Dynamic arrays resize themselves as needed. 

•Whenever this happens, the old array is deleted in 
favor of a new one, but the old iterators are not also 
updated, and so they refer to deallocated memory.

• Insertion at certain point cause the array of vector 
to expand (new array is created).
•Deletion at certain point cause it to shrink (also 

create new array).
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Dangerous Behavior of Vector Iterator 

•Reinitialize iterators of a vector whenever its 
size has been changed.

•(We don’t need to do that for List)
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Differences between Vectors and Lists
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Vector List

[] Allowed Not allowed

Compare iterators (<, 
>, =, etc)

Allowed Not allowed

Use iterators after 
modifying contents

Not safe. Iterators 
need to be 
reinitialize

Safe

Body container Dynamic Array Doubly Linked List
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Bugs in your software are actually special 
features :)
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