
CS32 Discussion
Week 6

Muhao Chen

muhaochen@ucla.edu

http://yellowstone.cs.ucla.edu/~muhao/

1

mailto:muhaochen@ucla.edu
http://yellowstone.cs.ucla.edu/~muhao/

Outline

•Recursion

•Template Classes

•STL Containers

2

3

4

5

6

7

Quicksort

8

void split(double a[], int n, double splitter, int& firstNotGreater, int& firstLess);

void order(double a[], int n)
{

if (n <= 1) return;
int pivot = a[0], ng, less;
split(a, n, pivot, ng, less);
order(a, ng);
order(a + less, ng – less);
return;

}

9

Problem: Permutation

•Print out the permutations of a given vector.

•E.g.

• [1,2,3] have the following permutations:

• [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], and [3,2,1].

•void permutation(vector<int>& nums, int start);

10

Permutation

11

void permutation(vector<int>& nums, int start) {
if (start == nums.size() - 1) {

for(int i=0; i<nums.size(); ++i)
cout << nums[i] << ' ,'; cout << endl;

}
permutation(nums, start + 1);
for (int i=start+1; i<nums.size(); ++i) {

swap(nums[start], nums[i]);
permutation(nums, start + 1);
swap(nums[start], nums[i]);

}
}

Template

12

13

14

15

16

Template Specialization

•What if sometimes, we want a template class with
certain data type to have its exclusive behaviors?

•E.g., define member function uppercase()
• pair<int> p1;
• pair<char> p2;
•We want to allow p2.uppercase();
•We don’t want to allow p1.uppercase();

17

18

19

20

Pass by value for
ADTs are slow

STL Containers

21

22

23

24

25

26

27

28

begin(), end(), and back()

•begin(): return an iterator that points to the first
element.

•end(): return an iterator that points to the past-the-
last element
• past-the-last: a theoretical element to represent the

place after the last element.

•back(): return an iterator that points to the last
element.

29

30

31

32

33

Insight: List

•How list is implemented: doubly linked list.

•No [] allowed to access elements in List.

•Using iterator to traverse a list is always Safe.

•And: >, >=, <, and <= comparisons are NOT VALID
for list iterators!

34

Insight: Vector

•How vector is implemented: dynamic array.

•We can use [] to access elements in a vector.

•>, >=, <, and <= comparisons are VALID for vector
iterators.

•But there might be dangerous behaviors on vector
iterators each time we have performed
insertion/deletion (incl. push_back()).

35

Dangerous Behavior of Vector Iterator

36

int main () {
vector<int> v;
v.push_back(50);
v.push_back(22);
v.push_back(10);

vector<int>::iterator b = v.begin();
vector<int>::iterator e = v.end();
for (int i = 0; i < 100; i++) {

v.push_back(i);
}
while (b != e) {

cout << *b++ << endl;
}

}

Dangerous Behavior of Vector Iterator

• Insertions and deletions on *vectors*, will possibly
INVALIDATE any iterators defined on that vector !!!

37

Dangerous Behavior of Vector Iterator

•Dynamic arrays resize themselves as needed.

•Whenever this happens, the old array is deleted in
favor of a new one, but the old iterators are not also
updated, and so they refer to deallocated memory.

• Insertion at certain point cause the array of vector
to expand (new array is created).
•Deletion at certain point cause it to shrink (also

create new array).

38

Dangerous Behavior of Vector Iterator

•Reinitialize iterators of a vector whenever its
size has been changed.

•(We don’t need to do that for List)

39

Differences between Vectors and Lists

40

Vector List

[] Allowed Not allowed

Compare iterators (<,
>, =, etc)

Allowed Not allowed

Use iterators after
modifying contents

Not safe. Iterators
need to be
reinitialize

Safe

Body container Dynamic Array Doubly Linked List

41

Bugs in your software are actually special
features :)

42

