
1

Week 8

Muhao Chen

muhaochen@ucla.edu

2

Outline

 Review

 Pointers and references

 Dynamic memory allocation

 Struct

Pointers

3

4

Pointers

 Pointer:

 Address of a variable in the memory.

 Declare a pointer (use asterisk):

<data_type> * <pointer_name> [= <initialization>];

e.g.: int * ptr;

double *p, *q;

double *p, *q, r;

 <data_type>: what type of value is pointed by the

pointer.

5

Pointers

 How to point a pointer to a regular variable?

 &<variable_name>, e.g. int a; int *ptr = &a;

 How to get the value at the address indicated

by the pointer?

 *<pointer_name>, e.g. int b = *ptr;

 * and & are two memory operations

* Operator (dereference)

 * before an already-initialized pointer: dereference

 i.e. to get the value stored behind the address.

 int a=5, *p; p=&a;

 cout << p; //will print the address 001EF800 (hexadecimal)

 cout << *p; // will print out 5

6

a: 5

p: 001EF800 001EF804 001EF808 001EF80C

7

Dereference of a pointer
int main()
{

double x, y; // normal double variables
double *p; // a pointer to a double variable
x = 5.5;
y = -10.0;
p = &x; // assign x’s memory address to p
cout << "p: " << p << endl;
cout << "*p: " << *p << endl;
p = &y;
cout << "p: " << p << endl;
cout << "*p: " << *p << endl;
return 0;

}

Output:

p: 001EF8B8

*p: 5.5

p: 001EF8A8

*p: -10

& operator (reference)

 Used before a variable

 Reference: get the address of a variable

 int a=5;

 cout << a; //5

 cout << &a; //001EF800

 Inverted operator of *:

 *&a *&*&a a we’ll get the same value

 &&a X not allowed. “The Address of an address” is not a correct

semantics.

8

p: 001EF800 001EF804 001EF808 001EF80C

Does a pointer have an address?

 Does a pointer have an address?

 Yes. It’s also a kind of variable, and stored in the memory.

 cout<< &p; //10FE3F38

9

p: 001EF800 001EF804 001EF808 001EF80C

a: 5

p: 001EF800

10FE3F30 10FE3F34 10FE3F38 10FE3F3C

10

Can we create pointers of pointers?

 Pointer is also a type of variable

 A pointer also has its own pointer, e.g.

int a = 10;

int* ptr = &a;

int** ptr2ptr = &ptr;

a
0x7fff69a5dc04

ptr
0x7fff69a5dbf8

ptr2ptr
0x7fff643b9bf0

What is the size of a pointer

 4Bytes or 8Bytes

 Depends on whether your environment is 32-bit or 64-

bit

 Regardless of what type of variable it points to

 int *p=&a; double *p2=&b;

11

p: 001EF800 001EF804 p2: 001EF808 001EF80C

int a: 5 double b: 3.14159265359

p2: 01EF808 p: 001EF800

10FE3F30 10FE3F34 10FE3F38 10FE3F3C

Both pointers use 4-byte spaces

to store a 4-byte address

Can we perform arithmetic operations

on a pointer?
 Yes. It will “move” the pointer. (i.e. changes the pointer it

points to).

 int a[5] = {1,2,3,4,5};

 int *p = a; //or p = &a[0];

 cout << *p; //1

 cout << *(p+3); //4

 p++; cout << *p; //2

12

1 2 3 4 5a

p p+3

Arithmetic on pointers

 int *p = &a; // suppose its address is 0x08000000

 What’s the address of *(p+1) ? 0x08000001?

 Actually it’s 0x08000004 (or 0x08000008)

 Increase a pointer by 1 always adds the size of its dereference

type to it

 double *q;

 q++ adds 8 to the address stored in q

 Let q point the next “double type block” in the memory

13

Arithmetic on pointers

 Note: priority of * is lower than that of regular

arithmetic operations

 *(p + 1) means access the next block pointed by

p

 *p + 1 means increase 1 to the element pointed

by p

14

int a[2] = {0, 100}

int *p = &a[0];

cout << *(p + 1); //this will get us 100

cout << *p + 1; //this will get us 1

Arithmetic on pointers

 Question:

 int a = 5, *q; q=&a;

 Which one increases a to 6?

 A. (*q)++ B. *q++ C. A and B

 A

 B will only get the dereference of the next block of

q. (i.e. q++, then *q)

Priority of ++ is higher than * (+ << * << ++)

15

Can we perform comparison

operations between pointers?
 int a[5];

 int *p=&a[0], *q=&a[1];

 q > p is true

 Yes. Addresses are comparable.

16

Copy an inverted C-string

17

int main() {

char s[]=“<<<-----[”;

char t[100];

char *p=&s[strlen(s) - 1]; // point p to the last character of s

char *q=&t[0]; //point q to the last character of t

while (p >= &s[0]) { //while pointer p doesn’t go before &s[0]

*q = *p; //get the content pointed by p to that of q

p--; q++; //p moves left, q moves right.

}

*q = ‘\0’;

cout << t << endl;

}

[-----<<<

< < < - - - - - [\0s

[- - \0t

p

q

18

Two ways of using actual parameters

void addOne(int a){

a++;

}

int main(){

int x = 1;

addOne(x);

cout << x << endl;

return 0;

}

// output: 1

void addOne(int* a){

(*a)++;

}

int main(){

int x = 1;

addOne(&x);

cout << x << endl;

return 0;

}

//output: 2 (x will

change)

void addOne(int& a){

a++;

}

int main(){

int x = 1;

addOne(x);

cout << x << endl;

return 0;

}

//output: 2 (x will

change)

Formal parameter: Actual parameters:

19

Null Pointer

 A null pointer is to indicate that the pointer does

not point to anything. (point to address 0)

 int * p;

 p = 0;

 p = NULL;

 p = nullptr;

20

Pointer VS Array

 Array is one kind of constant pointer

 int a[] = {1,2,3,4,5};

 a is actually a fixed pointer that points to the first

element of the array

 a == &a[0]

1 2 3 4 5

a

Use an array as a pointer

 Use an array as a pointer

 int a[5];

 *(a+1) is equivalent to a[1]

 *(a+2) is equivalent to a[2]

 Array address is not modifiable

 a++; a += 5; X

 [] is bounded, *() is not bounded

 a[5] usually causes compile error

 *(a + 5) is accessible, but is an undefined behavior

21

Reference Type

22

Reference type

 <type> &<name> = <referee>

 int a=5; int &ra = a;

 Create another name of a variable

 i.e. any change made to a will happen to ra, vice versa

 When declaring a reference type, must initialize it

 int &ra; X

23

int a=5;

int &ra = a;

cout << a++ << endl;

cout << ra++ << endl;

cout << a <<endl;

cout << ra <<endl;

5

6

7

7

Dynamic Memory Allocation

24

Static memory allocation

 If we want to save a document paragraph into

a C-string.

 #define MAXLENGTH 10000

 char s[MAXLENGTH+1]; cin.getline(s);

 What if the paragraph is extremely long?

 out-of-bound

 What if the paragraph has only five words?

 Over-allocated memory

25

Dynamic allocation

 What if we want to fit the paragraph into a C-

string with right the sufficient space of mem?

 Dynamic allocation of an array

 <type> *<name> = new <type>[<#elements>];

 char *article = new char[length + 1];

26

int length;

cout << how many characters are at most in your article? << endl;

cin >> length;

char *article;

if (length >0)

article = new char[length + 1];

Int variable

Yet another safe copy of a C-string

27

char s[] = “Oh my god, they killed Kenny!”;

char *t = new char[strlen(s) + 1];

strcpy(t, s);

What if we want to dynamically

allocate a 2-D array

28

int rows = 5; int cols = 20;

int **array = new int*[rows];

for (int i=0; i<rows; ++i)

array[i] = new int[cols];

//array is now array[5][20]

Delete

 The dynamically allocated memory will not be

released automatically.

 A program may consume huge resources of

memory if we allocate memory too many

times without releasing it.

29

//data processing

fstream fin, fo;

fin.open(“huge_data_set.csv”);

fo.open(“processed_data_set.csv”, std::out);

while (!fin.eof()) {

char *line = new char[MAX_LINE_LENGTH];

fin.readline(line);

process_data_formate(line); //process data

fo << line; //write a line to file

}

Delete

 delete[] s;

 Delete the entire array pointed by s and

release all the memory.

 Rules of memory allocation: where there’s a

New, there’s a corresponding delete.
30

char s1[] = “Respect my authoritah!”;

char *t = new char[s1.size() + 1];

strcpy(t, s1);

cout << t << endl;

delete[] t;

Memory Leak

31

int *p;

p = new int[200000];

p = new int[100000];

• We allocate 200000 blocks of int and point p to it.

• Then we allocate another 100000 and point p to it. p

no longer points to the first 100000 blocks.

• The first 200000 blocks of int becomes a ghost. We

can no longer access it and release it.

• This phenomenon is called Memory Leak.

New, delete a single object

 int *p = new int;

 int *p = new int[1];

 int p = *(new int); //delete &p;

 delete p;

32

Struct

33

Create a database

 Write a simple database that will store a list of you

(students).

 name

 student ID

 email address

 letter grade

 Inconvenient

 What if I want to swap records of two students? Perform four

swaps.

34

#define NUM_STUDENT 33

string name[NUM_STUDENT];

int id[NUM_STUDENT];

string email[NUM_STUDENT];

char grade[NUM_STUDENT];

Define a struct

 A compound type of multiple contents.

35

struct student {

string name;

int id;

string email;

char grade;

}; //Note: there a semi-colon here

Declare objects of a struct

 student eric;

 student students[NUM_STUDENTS];

36

Initialize objects of a struct

37

struct student {

string name;

int id;

string email;

char grade;

}; //Note: there a semi colon here

student students[33];

students[0].name = “Eric Cartman”;

students[0].id = 123456789;

students[0].email = “”;

students[0].grade = ‘C’;

Accessing attributes of a uninitialized struct object results

in undefined behaviors.

Access attributes in a struct object

 <object name>.<attribute>

 Manipulating an attribute is same as

manipulating a variable.

38

student students[33];

students[0].name = “Eric Cartman”;

students[0].id = 123456789;

students[0].email = “”;

students[0].grade = ‘C’;

cout << students[0].name << endl;

Pointers of a struct

 Define and initialize
 student *s1;

 s1 = &students[0];

 Dynamic allocation of a struct object

 student *s2 = new student;

 Since new allocates memory and return a pointer.

39

Access attributes of a struct pointer

 student *s1=new student;

 We can use . with dereference

 (*s1).name;

 But for most of time we use ->

 s1->name;

 Differences between . and ->

 . left-hand is a struct object

 -> left-hand is a pointer to a struct object

40

Example of -> and .

41

student students[33];

students[0].name = “Eric Cartman”;

students[0].id = 123456789;

students[0].email = “”;

students[0].grade = ‘F’;

student *p = students;

cout << students[0].name << endl;

cout << p-> grade – 5 << end;

Eric Cartman

A

42

Bugs in your software are actually special
features :)

