
1

Week 5

Muhao Chen

Email: muhaochen@ucla.edu

2

Outline

 Multi-dimensional arrays

 C-string

Multi-dimensional Array

 An array of arrays

 int xy[3][4] = { {1,2,3,4} , {5,6,7,8}, {4,3,2,1} };

 Two-dimension represents a matrix (2-d tensor)

 Three-dimension represents a cube (3-d tensor)

 Higher-dimension … hyper-cube (k-d tensor)

 All elements in a multi-dimensional array has

to be the same type

3

1 2 3 4

5 6 7 8

4 3 2 1

How to declare a 2-d array

 Without initialization

 int xy[3][4];

 means 3 rows of 4-int arrays,

 Or a 3 rows * 4 cols of int matrix

 Type name[#rows][#cols]

 Both #rows and #cols need to be specified in

declaration (if without initialization)

 In the same way of #elements for a 1-d array

4

How to initialize a 2-d array;

 Regard it as an array of arrays

 int xy[3][4] = { {1,2,3,4} , {5,6,7,8}, {4,3,2,1} };

 Regard it as a series of int folds to a matrix

 int xy[3][4] = {1,2,3,4 , 5,6,7,8, 4,3,2,1};

 #rows can be omitted if with initialization

 int xy[][4] = {1,2,3,4 , 5,6,7,8, 4,3,2,1};

 We’ll get the same 3*4 int array

5

1 2 3 4

5 6 7 8

4 3 2 1

Initialize a 2-d array with less elements

 Less elements in some rows

 int xy[3][4] = { {1,2,3,4} , {5,6}, {4,3,2,1} };

 Missing elements in such rows will be all-zero

 Less total elements

 int xy[3][4] = { 1, 2, 3, 6, 7, 8, 4, 3, 2 };

 Elements in the end will be all-zero

6

1 2 3 4

5 6 0 0

4 3 2 1

1 2 3 6

7 8 4 3

2 0 0 0

Unacceptable ways of initializing a

2-d array
 int xy[3][4] = { {1,2,3} , {5,6,7,8, 9}, {4,3,2,1} };

 Row out-of-bound X

 int xy[3][4] = {1,2,3,4,5,6,7,8,9,10,11,12,13};

 More elements than #cols * #rows X

 int xy[3][] = {1,2,3,4,5,6,7,8,9,10,11,12};

 #cols not specified X

 int xy[3][4] = {1,2,3,4,”a”,6,7,8,9,10,11,12}; X

 Inconsistent and inconvertible types of elements

7

Accessing elements in a 2-d array

 Access an element

 xy[1][2]; //2nd row, 3rd col

 Access a row

 xy[1]; //2nd row

 However, there’s no direct way to access a

column

8

1 2 3 4

5 6 7 8

4 3 2 1

7

5 6 7 8

Example: Transpose a square matrix

 Swap each element in position (x,y) with that in position

(y,x)

 To simplify, make the matrix as a square

9

void transpose(int m[][], int n) {

int tmp;

for (int i=0; i<n; ++i)

for (int j=i + 1; j < n; ++j) {

tmp = m[i][j];

m[i][j] = m[j][i];

m[j][i] = tmp;

}

}

Note: 2-d Array will not check the

bound
 For a 1-d array, we know this will be regarded

as out-of-bound

 int a[3] = {0}; cout << a[3];

 For a 2-d array, the compiler won’t know

when it’s out-of-bound

10

Note: 2-d Array will not check the

bound
 s[4][5] is just to access the ((4 + 1) * #cols +

5)-th byte after s.

11

1 0 0 0

0 0 0 0

0 0 0 0

unknown unknown unknown unknown

unknown unknown unknown unknown

unknown unknown unknown unknown

The s[3][4] we

defined

The s[4][5] we

accessed

Note: 2-d Array will not check the

bound
 We need to remember the boundaries of 2-d

arrays ourselves. Otherwise it’s possible for a

2-d array to access any unexpected block of

the memory.

12

Applications of 2-d Arrays

 Image processing

 Images are usually

represented as k-d arrays

 Chessboard problems

 8-queen problem

 Knight’s tour problem

 Etc

 Graph
 (adjacency matrix)

 2-d tensors for neural networks

these days 13

C-strings in detail

14

15

C-String review

 What is a c-string

 A char array which terminates by ‘\0’ (or 0, or NULL).

 How to initialize a c-string

 Use either a string value or a set of char ended with a ‘\0’.

 char c[] = {‘g’, ‘o’, ‘o’, ‘g’, ‘l’, ‘e’, ‘\0’}

 char c[] = “google”

 How to input/output a c-string

 char c[100]; cin >> c; cout << c;

 How to copy a c-string (deep copy)

 char c[]=“google”; char d[100];

 for (i=0; c[i] != ‘\0’; i++) d[i] = c[i];

 d[i] = ‘\0’;

C-string

 What if multiple ‘\0’ coexist in a C-string

initialization

 The first ‘\0’ always represents the end

 char c[100]=“abc\0def\0hg”;

 cout << c;

 abc

 cout << c[4];

 d

16

Library functions for C-string

 include <cstring> (or include <string.h>)

 Library functions for C-strings

 Member functions of C++ Strings, such as

size() and substr(), no longer work for C-

strings.

17

strlen(s)

 Returns the length of s.

 char s[] = “aaaaaa”;

 cout << strlen(s);

 6

18

Implement strlen(s)

 What if we’re not allowed to use strlen

19

int strlen(s) {

int len;

for (len=0; s[len] != ‘\0’; ++len);

return len;

}

strcpy(t, s)

 Copy the C-string s to C-string t.

 This works as a deep copy.

 We have to make sure there’s enough space

in t.

 If length of s is larger than the size of t, program

will cause a runtime error.

 The return value is t.

20

strcpy(t, s) error: insufficient space in t

21

strncpy(t, s, n)

 Copy at most n characters from s to t.

 A safe way of strcpy(t, s):

 strncpy(t, s, sizeof(t) / sizeof(char));

 Note: if n < strlen(s), no ‘\0’ will be copied to t!

 Thus we cannot assume t as a completed C-string

by strncpy.

 We have to manually assign t[n]=‘\0’; 22

char* strncpy(char *t, char *s, int n) {

for (int i=0; i < n; ++i) {

t[i] = s[i]; if(s[i]) == ‘\0’) break;

}

return t;

}

strncpy

23

int main ()

{

char str1[]= "To be or not to be";

char str2[60];

char str3[60] = “David the Someberg who

buys lots of watermelons”;

/* copy to sized buffer (overflow safe): */

strncpy (str2, str1, sizeof(str2));

cout<< str2 << endl;

/* partial copy (only 5 chars): */

strncpy (str3, str2, 5);

cout<< str3 << endl;

str3[5] = '\0'; /* set the null character

manually */

cout<< str3 << endl;

return 0;

}

To be or not to be

To be the Someberg who buys lots

of watermelons

To be

strcat(t, s)

 Append C-string s to the end of t.

 t += s won’t do the job. Use strcat(t, s) instead.

 Note: there’s also no size check for t, we

have to make sure t has enough space for

strlen(t) + strlen(s);

24

char * strcat(char *t, char *s) {

int shift = strlen(t)

for (int i=0; i <= strlen(s); ++i)t[shift + i]=s[i];

return t;

}

strcat(s, t) example

25

/* strcat example */

#include <stdio.h>

#include <string.h>

int main ()

{

char str[80] = “”;

strcpy (str,"these ");

strcat (str,"strings ");

strcat (str,"are ");

strcat (str,"concatenated.");

cout << str;

return 0;

}

these strings are concatenated.

int strcmp(char *t, char *s)

 Compare two C-strings

 s == t; s < t; s > t; won’t do the work.

 Return value of strcmp is int, not bool!

 t equals to s: return 0

 t less than s: return something <0

 t greater than s: return something >0

 How to tell if t is greater than s?

 if (strcmp(t, s) > 0) …

26

strcmp(t, s)

27

strcmp(t, s)

28

int main ()

{

char key[] = "apple";

char buffer[80];

do {

printf ("Guess my favorite fruit? ");

fflush (stdout);

cin >> buffer;

} while (strcmp (key,buffer) != 0);

cout << “Correct answer!";

return 0;

}

Guess my favourite fruit? orange

Guess my favourite fruit? apple

Correct answer!

Summary of C-string functions

 http://www.cplusplus.com/reference/cstring/

29

Functions Usage

strlen(s) Return the length of s

strcpy(t, s) Copy s to t.

strncpy(t, s, n) Copy at most n characters from s to t.

strcat(t, s) Append s to t.

strcmp(t, s) Compare s and t.

http://www.cplusplus.com/reference/cstring/

Convert a C-string to a C++ String

 char cs[10] = “hello”;

 We can use either of the two below:

 string cpps = cs;

 string cpps(cs);

30

Convert a C++-string to a C-string

 string cpps = “abc”; char c[100];

 Don’t use c = cpps; //error

 Use strcpy(c, cpps.c_str()); instead

 c_str() Get the “C-string body” of a C++ string

31

Create an Array of C-strings

 A C string is an array of characters. This

means an array of C strings is simply a 2D

array:

 char s[10][20];

 In s, we can store up to 10 C strings, and each C

string can be at most 19 characters long.

 s[2] : the third C-string

 s[2][4] : the fifth character of the third C-string

32

Assign Values to Already-defined

C-String Array
 Always use strcpy to store a string to a row.

 char s[10][20];

 strcpy(s[0], “First string”);

 s[0] = “First string”; won’t do the work

33

Example of creating and using a C-

string array

34

char s[3][6]; // Can store three 5-letter words.

strcpy(s[0], “hello”);

strcpy(s[1], “apple”);

strcpy(s[2], “world”);

cout << s[0] << endl; // prints “hello”

cout << s[2][2] << endl; // prints “r”

Thank you.

35

