
Week 2

Muhao Chen

Email: muhaochen@ucla.edu

1

Outline

• Variables and operators

• Undefined behaviors

• If-else (conditional statements)

• Loops

• Characters

• String

2

Variables and operators

3

Variables and Operators

• A typical variable declaration:

• Type:
• int, double, char, bool, etc..

• E.g.
• int a = 1; //a is 1

• int a = 2; //a is 2

• double a = 1; //a is 1.0

• double a = 1.1; //a is 1.1

int cs = 400;

• int a = 2.0; //a == ?

• int a = 2.8; //a == ?

• //a is 2

• //a is 2 (round down)

Variables and Operators

• Identifier: Name of variable
• Starting with a letter or an underscore
• The rest part must be letters, digits or underscores
• Case sensitive

• Reserved word can not be used.

• int a;

• int _a;

• int a_;

• int a2;

• int 2a;

• int while;

• int a.b;

X

X

X

• int apple;

• int Apple;

• Int APPLE;

• Int aPPlE;

Identifiers of four different

variables (<-)

Variables and Operators

• Define variables
– Some people use:

double cpt_tax(int price)

{

double tax_rate = 0.0975;

double tax;

tax = price * tax_rate;

return tax;

}

6

 Some people use:

double cpt_tax(int a)

{

double b = 0.0975;

double c;

c = a * b;

return c;

}

Which one is better?

Names should be chosen carefully, so that program is readable.

Variables and Operators

int _____(int _)

{

double __ = 0.1;

double ____;

____ = _ * __;

return ____;

}

7

Variables and Operators

8

 What does the assignment operator (i.e. =) do?

 Assign the value of the right-hand side expression to the
left-hand side variable

 The right-most “=“ has the highest priority.

int x;
int y;
x = 5;
y = 5;

int x;
int y;
x = (y = 5);

int x;
int y;
x = y = 5;

int a = 2; //assignment works only where it is
int b = a + 2; //b is now 4
a = 3; //b will not change, b is still 4

int x = 5;
int y = 5;

int x=5, y=5;

Variables and Operators

• Arithmetic operators (+, -, *, /, %)
• a = 11 * 3; //a == 33
• b = 11(2 + 3); // error

9

Variables and Operators

• Compound assignment (+=, -=, *=, /=, %=)
• a -= 5; What does this mean?
• a = a - 5

10

• Examples
count += 2;
total -= discount;
bonus *= 2;
time /= rushFactor;
amount *= c1 + c2;

 which are equivalent to:

count = count + 2;

total = total – discount;

bonus = bonus * 2;

time = time / rushFactor;

amount = amount * (c1 + c2);

Variables and Operators

• Incremental Operators (++, --)
• int i=1;
• i++;

11

What does i++ mean?
What’s the equivalent
arithmetic expression?i=i+1;

i+=1;

What about ++i?

Variables and Operators

• ++i first increases the value of i, and then returns the
increased value.

i = 1;
j = ++i;

• i++ returns the (initial) value first, then do increment.
i = 1;
j = i++;

12

// i is 2, j is 2

// i is 2, j is 1

i+=1;
j=i;

j=i;
i+=1;

Variables and Operators

• int a=5, b, c;

• b = ++a;

• c = b++;

• //what are the values of a, b, c?

13

//a is 6 here. b is also 6.

//c is 6 here. Then b becomes 7.

a is 6, b is 7, c is 6.

Undefined behaviors

14

Undefined behavior

• What is undefined behavior?
• The undefined behavior is the result of executing computer code that does not have a

prescribed behavior by the language specification the code adheres to.

• If any step in a program’s execution has undefined behavior, then the entire execution
is meaningless

15

Undefined behavior

• E.g. Uninitialized variables

what will happened?
• might cause runtime error (Visual C++ debug mode)
• or might have different values each time you run the program
• NEVER assume that an uninitialized (int, double) variable will be

0

16

double k;
double e = 2 * k;
cout << e;

Undefined behavior

17

double k;
double e = 2 * k;
cout << e;

• When you try to run it in the debug mode.

Undefined behavior

• It’s also possible that you will see this (in release mode).

18

19

If-else (conditional statements)

If-else

• When our programs need to deal with different
choices under different conditions.

• e.g. If it is sunny, I go swimming, otherwise(else) I stay at
home.

• if(it is sunny tomorrow)
I go swimming;

else
I stay at home;

20

If-else

Format:
• If (boolean expression) //bool in brackets

statement;

else

statement;
• Note that the braces { }, are required when you have multiple statements

• Need brace {} for a block of multiple statements:
If (Boolean expression) {

statement1;

statement2;

…

}

else {

…

}

21

else is optional. If you don’t want to do

anything inside “else”, just omit it.

If-else

Put another if-statement inside a if-statement

What’s the output?
• 6

22

int a = 4, b = 4;
if (a == 4)
if (a == b)
a++;

if(a!=b)
a++;

cout << a << endl;

If-else

• Caution
• 1. Removing {} causes ‘if’ to affect only one statement.

• 2. Variables defined inside a branch if-else scope
cannot be seen from the outside of the scope.

23

int a = 8;
if (a == 4)

a++;
a /= 4;
// a is 2

int a = 8;
if (a == 4) {

a++;
a /= 4;

} // a is 8

If-else

What’s the result?

• compile error

error: ‘b’ was not declared in this scope

• b is declared in the if scope, it cannot be seen/used outside the scope.

24

int main()
{
int a = 4;
if (a == 4)
int b = 5;

cout << b << endl;
}

25

Loop

While loop

while (boolean expression) {

statements;

}

26

Loop condition

Loop body

When a procedure needs to be processed repeatedly.

While loop

• //compute n!=n*(n-1)*…*1

unsigned int n, i=1, result=1;

cin>>n;

while (i <=n) {

result *= i++;

}

cout<<result;

27

do-while loop

• Another form:

do {

statements;

} while (boolean expression);

• Difference?

• while : check the boolean expression before executing the loop body.

• Do .. while: execute the loop body once before checking the boolean
expression.

28

while… and do … while

29

int main()
{
int n=3, i=4, result=1;
while (i <= n) {

result *= i;
i++;

}
cout<<result;

}

int main()
{
int n=3, i=4, result=1;
do {

result *= i;
i++;

} while (i <=n);
cout<<result;

}

• n=3, i=4

• i <=n is false. Not entering loop

• result is 1

• n=3, i=4

• execute loop body first. result is

1*4=4. i++; // i becomes 5

• i <=n is false. End loop

• result is 4
Check the loop

condition before
exec loop body Exec loop body

before checking
the loop condition

While loop

• Watch out for infinite loop.

30

int n=3, i=1, result=1;
while (i <= n) {

result *= i;

}
//i++;

• Make sure that the loop must reach some condition to jump out

While loop

• A programmer (David) went to the grocery store.

31

• Before he left, his wife said, “while you see watermelons, take one.”

• Then David never came back.

for loop

1. The init step is executed first, and only once. This step allows you
to declare and initialize any loop control variables.

2. Next, the condition is evaluated. This allows you to decide when to
terminate the loop.

3. After the body of the for loop executes, the flow of control jumps
back up to the increment statement. Then go back to 2.

32

for (init; condition; increment)
{

statement(s);
}

for loop

• n!:

33

int main()
{
int n, result=1;
cin >> n;
if (n <= 0) cout << 0;
else {

for (int i=2; i<=n; ++i) {
result *= i;

}
cout << result;
}

}

for loop

• These are equivalent:

34

for (int i=2; i<=n; ++i) {
result *= i;

}

int i=2;
for (; i<=n; ++i) {
result *= i;

}

int i=2;
for (; i<=n;) {
result *= i;
++i;

}

int i=2;
for (;;) {
if (i>n)

break;
result *= i;
++i;

}

for loop

• Equivalence of for loop and while loop

35

for (init; condition; increment)
{

statement(s);
}

init;
while (condition)
{

statement(s);
increment

}

for (int i=2; i<=n; ++i)
{

result *= i
}

int i=2
while (i<=n)
{

result *= i;
++i;

}

for loop

• Question: can we find a equivalent do-while loop for a for-l}oop?

36

for (init; condition; increment)
{

statement(s);
}

init;
if (condition) {
do {
statement(s);

increment;
}
while (condition);
}

init;
do {

if (!condition)
break;

statement(s);
increment;

}
while (True);

37

Char and String

38

Char in C++

• Character type char is encoded using an integer
representation of 1 byte (i.e. ASCII)

• Range (0~255)

• ASCII is the encoding schema
• Examples

• ' ' is encoded as 32 '+' is encoded as 43

• 'A' is encoded as 65 'Z' is encoded as 90

• 'a' is encoded as 97 'z' is encoded as 122

39

Char in C++

• Arithmetic and relational operations are defined for
characters types

• 'a' < 'b' is true

• '4' > '3' is true

• '6' <= '2' is false

• ‘F’ – 5 is ‘A’

• ‘x' + (‘A’ – ‘a’) is ‘X’

• ‘Y’ – (‘Z’ – ‘z’) is ‘y’

• ‘a’ – 32 is ‘A’

Lower case letters is

actually greater than

its upper cases (-32)

40

Char in C++

• Explicit (literal) characters within single quotes
• 'a','D','*'

• Special characters - delineated by a backslash \

• Two character sequences (escape codes)

• Some important special escape codes
• \t denotes a tab w \n denotes end-of-line

• \\ denotes a backslash w \' denotes a single quote

• \" denotes a double quote w \0 0, end of string (NULL)

41

Char in C++

• #include<cctype> provides several useful functions for char, e.g.:
• isdigit(char c): Is c a digit?

• islower(char c): Is c lower case?

• isupper(char c): Is c upper case?

• isalpha(char c): Is c alphabetic?
• Yes->return true, No->return false

• tolower(char c): Convert c to lower case

• toupper(char c): Convert c to upper case

42

Char in C++

• Example

// This program demonstrates some of the character testing

// functions.

#include <iostream.h>

#include <ctype.h>

void main(void)

{

char input;

cout << "Enter any character: ";

cin >> input;

cout << "The character you entered is: " << input << endl;

cout << "Its ASCII code is: " << int(input) << endl;

43

String in C++

• String is a class in C++;
• Class:

• We will learn Class in detail in later classes.

• Similar to a data type, but more powerful than a data type, e.g. it can define
its own functions and attributes.

• A string stores a sequence of characters stored in consecutive memory
spaces

• A string is terminated by a null(‘\0’) character.

• To use string, we need to add
• #include<string>

44

String in C++

• Size() and Random accessing characters of a string

• For example: string s = “ab cd”;
• s consists of 5 characters: ‘a’, ‘b’, ‘ ’, ‘c’, ‘d’;

• We can use s.size() to get the number of characters in s, i.e. 5. (‘\0’ does
not count for the size() of a string)

• We can use s[i] to access the (i+1)-th character in s, e.g. s[1] = ‘b’. (i = 0 ..
s.size()-1)

• Type of s[i] is char

• Using s[i] such that i is greater than s.size()-1 is an undefined behavior

45

Input a string to cause an undefined behavior

cin >> s;

…

for (int k=0; k<s.size(); k++) {

if(s[k] == ‘H’) {

if(s[k+1] == ‘E’)

countHE++;

}

}

//SHELLFISH

Thank you!

46

47

48

49

Char in C++

• Example (cnt.)

if (isalpha(input))

cout << "That's an alphabetic character.\n";

if (isdigit(input))

cout << "That's a numeric digit.\n";

if (islower(input))

cout << "The letter you entered is lowercase.\n";

if (isupper(input))

cout << "The letter you entered is uppercase.\n";

if (isspace(input))

cout << "That's a whitespace character.\n";

}

50

Char in C++

• Example (cnt.)
• Input: 1

• Input: a

