The ATLaS User Manual

Haixun Wang
Carlo Zaniolo
Richard Luo

April 22, 2004

Contents

1 Introduction

2 ATLaS SQL on Tables

3 User-Defined Aggregates
4 Table Functions

5 Programming in ATLaS
5.1 Recursion e e e e
5.2 ROLAPs. e e e e e
5.3 References and Data Structures
5.4 The Apriori Algorithm

6 External Functions
6.1 Scalar Functions e
6.2 Table Functions e
6.3 Built-in Aggregates and Functions 0. ..

Chapter 1

Introduction

ATLaS is an SQL-based programming language for data-intensive applications. Unlike
languages, such as PL/SQL or SQL/PSM, which use the imperative the constructs of
procedural languages, ATLaS achieves Turing completeness by using declarations, i.e.,
by supporting the declarations of new aggregates and table functions.

An ATLaS program consists of list of declarations followed by a list of SQL state-
ments. Therefore, (with A|B denoting either A or B, and A* denoting zero or more
occurrence of A) we have:

ATLaS-program — ATLaS-dclx SQL-statementsx
ATLaS-dcl — Table-dcl | UDA-dcl | TFunc-dcl

Figure 1.1: Syntax of ATLaS extensions

The SQL-statements mentioned in Figure 1.1 are the basic select, insert, delete,
update commands of SQL-2, which are summarized in Figure 2.2. We will assume that
our reader is already familiar with SQL-2 and concentrate on the extensions which make
makes ATLaS so powerful. ATLaS is Turing-complete because of its declarations, which
are of three kinds:

1. Table declarations (Table-dcl]),
2. declarations of User-Defined Aggregates (UDA-dcl),

3. declarations of Table Functions (TFunc-dcl).

In the next Section we discuss simple programs that only use table declarations.
Programs containing user-defined aggregates and table functions are discussed in the
following sections.

Chapter 2

ATLaS SQL on Tables

ATLaS can use a variety of tables from different sources. In particular, it can access
B+Tree indexed tables managed by the embedded database system Berkeley DB [5].
For instance, say that an employee table, with key Eno, is stored in such a format in
the directory

C:\mydb\employees. [Say more about win vs linux] Then the following program first
gives a 5 % raise to the employees in the ’QA’ department, and then prints all the
employees who now make more than 60K:

/* Begin of ATlaS program— this is a comment*/
table employees(Eno int, Name char(18), Sal real, Dept char(6))
Btree(Eno) source 'C:\mydb\employees’;
update employees set Sal = Sal * 1.05
where Dept="QA’ ;
insert into stdout select Eno, Name

from employees where Sal > 60000;
/* End of ATlaS program */

The insert into stdout clause before select in the last statement can be omitted
without changing the meaning of this program. Thus ATLaS supports the standard
select, insert, delete, update statements of SQL-2. Observe that keywords can
be written in upper case or lower case—however, attribute names and other user-defined
identifiers are case-sensitive.

Since we assume that our readers are already familiar with SQL-2, we will now
concentrate on the new constructs of ATLaS and return to SQL in Section 6.

Three types of tables are currently supported in ATLaS, as follows:

1. Secondary storage tables with indexed by B+ trees on one or more attributes, as
in the following example:

TABLE employees(Eno int, Name char(18), Sal real, Dept char(6))
BTree(Eno) source 'C:\mydb\employees’;

The SOURCE declaration associates this table with the file C:\mydb\employees and
make it persistent. Persistent tables remain after the the program completes its

execution. Tables declared without a source are transitory and they are removed
at the end of the program execution.

2. Secondary storage tables with indexed by R+ trees on a pair or a quadruplet of
real attributes: the first can be used to index points, and the second for rectangles:

TABLE mypoints(x real, y real, object char(10)) RTree(x,y);

TABLE myrectangles(tx real, ty real, bx real, by real, object char(10))
RTree(tx,ty,bx,by);

3. Main memory tables, with a hash-based index on one or more attributes:

TABLE memo(j Int, Region Char(20))
MEMORY AS VALUES(O, ‘root-of-tree');

This example also illustrates that a transitory table can be initialized to the
results of the query defined using the AS query option. In this example, we use
constant values to initialize the table. In general, the initialization query can use
the content of previously declared tables.

A source declaration can only be given for B+tree and R+tree tables, but not for
MEMORY tables since these are never persistent. The syntax of table declarations is as
follows:

Table-dcl — ‘TABLE‘ table-id ‘(* columns keydec ¢)°
[[SOURCE' | ““file-name‘ “AS‘ query]
column-list — column [‘,* column]*
column — id type
type — CINT¢| ‘REAL¢ | ‘CHAR' ‘(‘ num ‘)‘ | ‘REF* ¢(“ id)¢
keydec — [‘BTree(‘key‘)‘, ‘RTree(‘key‘)‘, MEMORY] ;¢
key — ‘(“id [id]*)¢
load — ‘LOAD‘ ‘FROM' ““file-name’¢ ‘INTO¢ table-id

Table 2.1: Declaring and Initializing Tables in ATLaS.

The LOAD construct of ATLaS can be used to load into a table data from an external
file, where the commas (carriage returns) are used as separators between attribute
values (records). Newly loaded tuples are appended to the existing tuples.

SQL Statements

SQL-statement
select-st
order-clause
query

set-op
query-block

delete
insert

update
update-list

exp

ref

id

letter
digit

hxp
hxp-alias
qun-alias

L 1Ll

11

1

A

select-st| delete-st| insert-st| update-st

query [order-clause] ‘;*

‘ORDER‘ ‘BY‘ exp [‘ASC‘ | ‘DSC] [, exp [‘ASC* | ‘DSCJ*
query-block [set-op query-block]*
‘UNION‘|'INTERSECT"|'EXCEPT*

‘SELECT* hxp [, hxp]*

‘FROM‘ squn [, squn]*

[WHERE'* exp]

[{GROUP* ‘BY‘exp [, exp]*

[[HAVING® exp]

‘DELETE‘ ‘FROM‘ id [WHERE exp]
‘INSERT*‘ ‘INTO® id select-st ‘;*

VALUE ... not defined?

‘UPDATE' id ‘SET* update-list [WHERE* exp] ;¢
id ‘=‘exp [, id ‘=* exp]*

‘NIL‘ | num | float | string | id [“.* id] | ref
| eXp ((:‘|‘ < (l(<:‘|C>‘|‘>: (|‘<>‘) eXp
| exp (‘AND‘[‘OR‘|IN‘'NOT* ‘IN*) exp

| ‘EXISTS* exp

| (‘max‘|‘min‘|‘count‘|‘sum‘|‘avg’) ‘(‘exp‘)
| ﬁ(‘ exp ﬁ)‘

| ‘(‘ query ()C

ref ‘= id | id [id] ‘=* id

letter [letter | digit]*

(‘a;"‘Z‘l‘A"‘Z‘)

(‘0‘_‘9‘)

exp [[‘AS‘] hxp-alias] | [id “.¢] “*¢

id | ((ﬁ id [(7& id]* ﬁ)ﬁ

[FAS]id [‘(‘id @ “,* id)]

Table 2.2: Syntax of the basic SQL Statements supported in ATLaS

Chapter 3

User-Defined Aggregates

ATLaS supports the standard five aggregates count, sum, avg, min, and max with-
out the DISTINCT option. But the real power of ATLaS follows from its User-Defined
Aggregates (UDAs) discussed next. As a first example, we define an aggregate equiv-
alent to the standard avg aggregate in SQL.

Standard Average The first line of this aggregate function declares a local table,
state, to keep the sum and count of the values processed so far. While, for this par-
ticular example, state contains only one tuple, it is in fact a table that can be queried
and updated using SQL statements and can contain any number of tuples (see later ex-
amples). These SQL statements are grouped into the three blocks labelled respectively
INITIALIZE, ITERATE, and TERMINATE. To compute the average, the SQL statement in
INITIALIZE inserts the value taken from the input stream and sets the count to 1. The
ITERATE statement updates the table by adding the new input value to the sum and 1
to the count. The TERMINATE statement returns the final result(s) of computation by
INSERT INTO RETURN (to conform to SQL syntax, RETURN is treated as a virtual table;
however, it is not a stored table and cannot be used in any other role):

AGGREGATE myavg(Next Int) : Real
{ TABLE state(sum Int, cnt Int);
INITIALIZE : {
INSERT INTO state VALUES (Next, 1);
}

ITERATE : {
UPDATE state SET sum=sum+Next, cnt=cnt+1;
}

TERMINATE : {
INSERT INTO RETURN SELECT sum/cnt FROM state;
}

}

The basic initialize-iterate-terminate template used to define the average aggregate
of SQL-2, can now be used to defined powerful new aggregates required by new database
applications.

OnLine Average For instance, there is much current interest in online aggregates [2].
Since averages converge toward the correct value well before all the tuples in the set
have been visited, we can have an online aggregate that returns the average-so-far
every, say, 200 input tuples. (In this way, the user or the calling application can stop
the computation as soon as convergence is detected.) Online averages can be expressed
in ATLaS as follows:

AGGREGATE online avg(Next Int) : Real
{ TABLE state(sum Int, cnt Int);
INITIALIZE : {
INSERT INTO state VALUES (Next, 1);
}

ITERATE: {
UPDATE state SET sum=sum+Next, cnt=cnt+1;
INSERT INTO RETURN
SELECT sum/cnt FROM state WHERE cnt % 200 = 0;

}

TERMINATE : { }

}

Therefore, the online average program has been obtained from the traditional aver-
age program by removing the statements from TERMINATE and adding a RETURN statement
to ITERATE. Our UDA online_avg takes a stream of values as input and returns a stream
of values as output (one every 200 tuples). In this example only one tuple is added to
output by the the INSER INTO RETURN statement; in general, however, such state-
ment can produce (a stream of) several tuples. Thus ATLaS UDAs operate as general
stream transformers.

ATLaS uses the same basic framework to define both traditional aggregates and
non-blocking aggregates. ATLaS UDAs are non-blocking when their TERMINATE clause
is either empty or absent.

The typical default semantics for SQL aggregates is that the data is first sorted
according to the GROUP-BY attributes; this is a blocking operation. However, ATLaS’s
default semantics for UDAs is that the data is pipelined through the INITIALIZE and
ITERATE clauses where the input stream is transformed into the output stream: the
only blocking operations (if any) are those specified in TERMINATE, and only take place
at the end of the computation.

Calling User-Defined Aggregates (UDAs) TUDAs are called as any other builtin
aggregate. For instance, given a database table employee(Eno, Name, Sex, Dept,
Sal), the following statement computes the average salary of employees in department
1024 by their gender:

SELECT Sex, online_avg(Sal)
FROM employee WHERE Dept=1024 GROUP BY Sex;

Thus the results of the selection, defined by Dept= 1024, are pipelined to the aggre-
gate in a stream-like fashion.

SQLCODE This a convenient labor-saving device found in most SQL systems, that
comes very handy for the ATLaS programmer who wants to correlate a statement with
the next. SQLCODE is set to a positive value when the last statement had a null effect,
and to zero otherwise. Thus to tell the user that no employee was found in department
1024, we can modify the previous program as follows:

SELECT Sex, online_avg(Sal)
FROM employee WHERE Dept=1024 GROUP BY Sex;
select 'Nobody found in that department’

where SQLCODE >0;

In the last statement, the predicates in the WHERE clause controls its conditional ex-
ecution, in a fashion similar to that of the IF clauses in a procedural programming
language. In fact, the ATLaS compiler recognizes, and optimizes execution of, such
conditional predicates.

Minima: Points and Values. In the next Example, we have a sequence of point-
value pairs, and we define a minpair aggregate that returns the point where a minimum
occurs along with its value at the minimum.

AGGREGATE minpair(iPoint Int, iValue Int): (wPoint Int, mValue Int)
{ TABLE mvalue(value Int) MEMORY; TABLE mpoints(point Int) MEMORY;
INITIALIZE: {
INSERT INTO mvalue VALUES (iValue);
INSERT INTO mpoints VALUES(iPoint);
}
ITERATE: {
UPDATE mvalue SET value = iValue WHERE iValue < value;
DELETE FROM mpoints WHERE SQLCODE = O;
INSERT INTO mpoints SELECT iPoint FROM mvalue
WHERE iValue =mvalue.value;
}
TERMINATE: {
INSERT INTO RETURN SELECT point, value FROM mpoints, mvalue;
}

Here have used two internal tables: the mvalue table holds, as its only entry, the
current min value, while points holds all the points where this value occurs. In the
ITERATE statement we have used SQLCODE to ‘remember’ if the previous statement up-
dated mvalue; this is the situation in which the old value was larger than the new one
and the old points must be discarded.

Then, the last statement in ITERATE adds the new iPoint to mpoints if the input
value is equal to the current min value. In the UDA definition the formal parameters
of the UDA function are treated as constants in the SQL statements. Thus, this third
INSERT statement adds the constant value of iPoint to the mpoints relation, provided
that ivValue is the same as the value in mvalue—thus the FROM and WHERE clauses operate
here as conditionals. The RETURN statement returns the final list of min pairs as a stream.

For instance, say that we have a time series containing the daily closing prices of
certain stocks arranged in temporal sequence (i.e. the table stock prices, below).
Then the following program computes the local minima for each stock:

/* The declaration of AGGREGATE minpair should go here*/
TABLE stock_prices(Day Int, Stock char(4), Cprice Real)
source 'D:\mydabase\stock_prices’
select Stock, minpair(Day, Stock) — iPoint, minpair(Day, Stock)— iValue
from stock_prices
group by Stock ordered by Stock, minpair(Day, Stock) — iPoint

Observe the use of “—” to identify the different components in the two-column
tuples returned by the aggregate minpair. Since temporal data types are not yet
supported in the current ATLaS version, we are using integers to represent dates: thus
May, 27, 1999 is represented as 19990527.

The next table summarizes the syntax for declaring new aggregates.

UDA-del — ‘AGGREGATE" id ‘(‘ column-list ©)¢ “:‘ return-type aggr-body
aggr-body — ‘{* ATLaS-dcl*
INITIALIZE¢ % { SQL-statement* %‘}¢
ITERATE* “* { SQL-statement* ‘* }*
‘TERMINATE* “* { SQL-statement* ‘;‘}*

(¢

return-type — type | {(* column-list ‘)¢

Figure 3.1: The declaration of UDAs

Initializing Tables and Combining Blocks. Let us now introduce the following
two syntactic variations of convenience supported in ATLaS:

e Tables declared in UDAs can be initialized as part of their declaration, via an
SQL statement. This executes at the time when the first tuple is processed, thus
the result is the same as if the initialization had been executed in the INITIALIZE
block.

e Different blocks can be merged together when they perform the same function.
In the next example the INITIALIZE and ITERATE blocks are merged together.

Our Online Averages UDA could also have been written as follows:

AGGREGATE online avg(Next Int) : Real
{ TABLE state(sum Int, cnt Int) AS VALUES(0, 0);
INITIALIZE:ITERATE: {
UPDATE state SET sum=sum+Next, cnt=cnt+1;
INSERT INTO RETURN
SELECT sum/cnt FROM state WHERE cnt % 200 = 0;

}

In the previous example, the statement has been omitted: this is equivalent to
writing ‘TERMINATE: { } ’. An empty INITIALIZE statement can also be omitted in a
similar fashion.

The results produced by online averages depend on the order in which the data is
streamed through the UDA. This illustrate a common situation in stream processing:
the abstract semantics of the aggregate used is order-independent, but approxima-
tions must be used because of efficiency and real-time requirements (e.g., nonblocking
computations); often, the approximate UDA is order-dependent.

In other situations, no approximation is involved, and the dependence on order
follows from the very semantics of the UDA. For instance, this is the case of the
rising aggregate described below.

Rising. In addition to temporal extensions of standard aggregates (suggested home-
work: write them in ATLaS), TSQL2 [7] proposes this new aggregate to return the
maximal time periods during which a certain attribute values has been increasing
monotonically. We can apply this aggregate to our stock_prices(Day Int, Stock char(4),
Cprice Real) table to find the periods during which different stocks have been rising, as
follows:

select Stock, rising(Day, Cprice) — Start, rising(Day, Cprice)— End
from stock_prices
group by Stock

where rising is defined as follows:

AGGREGATE rising(iPoint Int, iValue Real) : (Start Int, End Int)
{ TABLE rperiod(First Int, Last Int, Value Real) MEMORY;
INITIALIZE: {
INSERT INTO rperiod VALUES (iPoint, iPoint, iValue);

}
ITERATE: {

INSERT INTO return SELECT First, Last
FROM rperiod
WHERE iValue <= Value AND First < Last;

UPDATE rperiod SET Last=iPoint, Value=iValue
WHERE iValue > Value;

UPDATE rperiod SET First=iPoint, Last=iPoint, Value=iValue
WHERE SQLCODE > 0;

TERMINATE:{ INSERT INTO return SELECT First, Last
FROM rperiod
WHERE First < Last; }
}
}
Therefore we have a sequence of time-value ordered by increasing time. We store a
zero length period iPoint, iPoint whenever the new iValue is not increasing (also
at INITIALIZE). Also a non-zero length period is currently held in rperiod we return

it. When the new iValue is larger than the previous stored value, we advance the End
of the current period to the current point.

10

Chapter 4

Table Functions

Table functions play a critical role in rearranging data, and allowing the composition
of aggregates. For instance, if we want to count the number of the local minima found
in the execution of minpair, we can use the following table function:

Cascading of Aggregates via a Tfunction

/* include the declaration of the AGGREGATE minpair here*/
TABLE stock_prices(Day Int, Stock char(4), Cprice Real)
source 'C:\mydabase\stock_prices’ ;
FUNCTION localmins():(Stock Int, Point Int, Value Int)
{ insert into RETURN
select p.Stock, minpair(p.Day, p.Cprice)
from stock_prices as p
group by p.Stock

select L.Stock, count(L.Point)
from stock_prices, TABLE(localmins()) AS L

group by L.Stock;

Here the table function does little more than calling the minpair aggregate on
the stock_prices table, and organizing the results as a virtual table with attributes
(Stock, Point, Value). Then, the aggregate count can be called on this virtual
table, whereas the direct cascading of aggregates is not allowed in SQL, nor in ATLaS.

Also observe that the notation TABLE(...) must be used when invoking table
functions, to conform to SQL standards.

The final NB is that the ‘dot’ notation (e.g., L.Point) is used to refer to the various
columns in a tuple produced by a table function, whereas we use“—” for UDAs (e.g.,
minpair(Day, Stock) — iPoint).

Pre-Sorting the Data The correctness of the rising is predicated upon the data
being sorted by increasing time. If that is not the case, we can use a table function to
pre-sort the data. Then, our program becomes:

11

/*AGGREGATE minpair include here the rising declaration*/
TABLE stock_prices(Day Int, Stock char(4), Cprice Real)
source 'C:\mydabase\stock_prices' ;

FUNCTION sort():(Stock Int, Point Int, Value Int)
{ insert into RETURN
select Day, Stock, Cprice)
from stock_prices
ORDERED BY Stock, Day

}

insert into stdout

select Stock, rising(Day, Stock) — Start, rising(Day, Stock)— End
from stock_prices, TABLE(sort())

group by Stock

Column Value Pair The first step for most scalable classifiers is to convert the
training set into column/value pairs. For instance, say that our training set is as
follows, where the various conditions are described by their initials (e.g., S, O, R in the
first column stand respectively for Sunny, Overcast, and Rain):

RID | Outlook | Temp | Humidity | Wind | Play
1 S H H W N
2 S H L S N
3 O H L w Y
4 R M H w Y

Figure 4.1: The relation PlayTennis

Then, we want to convert PlayTennis into a new stream of three columns (Col,
Value, YorN) by breaking down each tuple into four records, each record representing
one column in the original tuple, including the column number, column value and the
class label YorN. For instance, the first tuple should produce the following tuples:

(17 s’ N)7 (25 H) N)’ (35 H7 N)’ (43 w7 N)
Our next table function, called dissemble can be used for the task.

FUNCTION dissemble
(vl Char(1), v2 Char(1), v3 Char(1l), v4 Char(1), YorN Char(1)):
(col Int, val Char(1), YorN Char(1));
{INSERT INTO RETURN
VALUES (1, v1, YorN), (2, v2, YorN),
(3, v3, YorN), (4, v4, YorN);
}

The syntax for function tables is given below. The mapping expressed by dissemble
could be expressed in standard SQL via the union of several statements, but such a
formulation could lead to inefficient execution. In later sections we will show that,

12

Tfunc-del — ‘FUNCTIONid ‘(‘ column-list ¢)* “¢ return-type Tfunc-body
return-type — type | {(‘ column-list ‘)¢
Tfunc-body — ‘{* ATLaS-dcl* SQL-statement™* ‘}*

Figure 4.2: The declaration of a Table Function

using this table function and specialized aggregates we can express Naive Bayesian
classifiers and Decision Tree Classifiers in a few ATLaS statements.

13

Chapter 5

Programming in ATLaS

5.1 Recursion

Example 1 illustrates the typical structure of an ATLaS program. The declaration of
the table dgraph(start, end) is followed by that of the UDA reachable; the table and
the UDA are then used in an SQL statement that calls for the computation of all nodes
reachable from node ’000’. The clause SOURCE (mydb) denotes that dgraph is a table from
a database that is known to the systems by the name ’mydb’. (Without the SOURCE
clause dgraph is local to the program and discarded once its execution completes).
The program of Example 1 shows one way in which the transitive closure of a
graph can be expressed in ATLaS. We use the recursive UDA reachable that perform
a depth-first traversal of the graph by recursively calling itself. Upon receiving a node,
reachable returns the node to the calling query along with all the nodes reachable
from it. (We assume that the graph contains no directed cycle; otherwise a table will
be needed to memorize previous results and avoid infinite loops.) Observe that the
INITIALIZE and ITERATE routine in Example 1 share the same block of code.

Example 1 Computation of Transitive Closure

TABLE dgraph(start Char(10), end Char(10)) SOURCE (mydb);

AGGREGATE reachable(Rnode Char(10)) : Char(10)
{ INITIALIZE: ITERATE: {
INSERT INTO RETURN VALUES (Rnode)
INSERT INTO RETURN
SELECT reachable(end) FROM dgraph
WHERE start=Rnode;

}
}

SELECT reachable(dgraph.end) FROM dgraph
WHERE dgraph.start=’000’;

Besides the Prolog-like top-down computation of Example 1, we can also express
easily the bottom-up computation used in Datalog, and a stream-oriented computation
will be discussed in the next section.

14

Recursive queries can be supported in ATLaS without any new construct since
UDAs can call other aggregates or call themselves recursively. Examples of application
of recursive UDAs in data mining will be discussed later.

Along with recursive aggregates, table functions defined in SQL play a critical role
in expressing data mining applications in ATLaS. For instance, let us consider the
table function dissemble that will be used to express decision tree classifiers. Take for
instance the well-known Play-Tennis example of Figure 5.1; here we want to classify the
value of Play as a ‘Yes’ or a ‘No’ given a training set such as that shown in Table 5.1.

RID | Outlook | Temp | Humidity | Wind | Play
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
3 Overcast Hot High Weak Yes
4 Rain Mild High Weak Yes
5 Rain Cool Normal Weak Yes
6 Rain Cool Normal Strong Yes
7 Overcast | Cool Normal Strong No
8 Sunny Mild High Weak No
9 Sunny Cool Normal Weak Yes
10 Rain Mild Normal Weak Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Weak Yes
14 Rain Mild High Strong No

Figure 5.1: The relation PlayTennis

The first step for most scalable classifiers [4] is to convert the training set into
column/value pairs. This conversion, although conceptually simple, is hard to express
succinctly in SQL. Consider the PlayTennis relation as shown in Figure 5.1. We want to
convert PlayTennis into a new stream of three columns (Col, Value, YorN) by breaking
down each tuple into four records, each record representing one column in the original
tuple, including the column number, column value and the class label YorN. We can
define the table function dissemble of Example 2 to solve the problem. Then, using
this table function and the recursive aggregate classify, Algorithm 1 implements a
scalable decision tree classifier using merely 15 statements.

Example 2 Dissemble a relation into column/value pairs.

FUNCTION dissemble (vl Int, v2 Int, v3 Int, v4 Int, YorN Int):
(col Int, val Int, YorN Int);

{ INSERT INTO RETURN VALUES
(1, v1, YorN), (2, v2, YorN), (3, v3, YorN), (4, v4, YorN); }

In the INITIALIZE and ITERATE statements of classify in Algorithm 1, we update the
class histogram kept in the summary table for each column/value pair. The TERMINATE
routine first computes the gini index for each column using the histogram. However, if
a column has a single value (count(Value)< 1), or tuples in the partition belongs to
one class (sum(Yc)=0 or sum(Nc)=0), then the column is not splittable and hence,
not inserted into ginitable. On line 12, we select the splitting column which has the
minimal gini index. A new sub-branch is generated for each value in the column. The
UDA minpair previously defined returns the minimal gini index as well as the column

15

Algorithm 1 A Scalable Decision Tree Classifier
1: AGGREGATE classify(iNode Int, RecId Int, iCol Int, iValue Int, iYorN
Int)
2: { TABLE treenodes(RecId Int, Node Int, Col Int, Value Int, YorN
Int);
3: TABLE mincol(Col Int);

4: TABLE summary(Col Int, Value Int, Yc Int, Nc Int)
BTree(Col,Value) ;

5: TABLE ginitable(Col Int, Gini Int);

6: INITIALIZE : ITERATE : {

7: INSERT INTO treenodes VALUES(RecId, iNode, iCol, iValue, iYorN);

8: UPDATE summary

SET Yc=Yc+iYorN, Nc=Nc+1-iYorN
WHERE Col = iCol AND Value = iValue;
9: INSERT INTO summary
SELECT iCol, iValue, iYorN, 1-iYorN
WHERE SQLCODE > 0;
}
10: TERMINATE : {
11: INSERT INTO ginitable
SELECT Col, sum((Yc*Nc)/(Yc+Nc))/sum(Yc+Nc) FROM summary
GROUP BY Col HAVING count(Value)>1 AND sum(Yc)>0 AND
sum(Nc) >0;
12: INSERT INTO mincol SELECT minpair(Col, Gini)—+mPoint FROM
ginitable;
13: INSERT INTO result SELECT iNode, Col FROM mincol;
/* Call classify() recusively to partition each of its subnodes unless it is pure.
Y/
14: SELECT classify(t.Node*MAXVALUE+m.Value+1, t.RecId, t.Col,
t.Value, t.YorN)
FROM treenodes AS t,
(SELECT tt.RecId Recld, tt.Value Value
FROM treenodes AS tt, mincol AS m
WHERE tt.Col=m.Col;
) ASm
WHERE t.RecId = m.RecId AND
t.col NOT IN (SELECT col FROM mincol)
GROUP BY m.Value;

where the minimum value occurred. After recording the current split into the result
table, we call the classifier recursively to further classify the sub nodes. On line 14,
GROUP BY m.Value partitions the records in treenodes into MAXVALUE subnodes, where
MAXVALUE is the largest number of different values in any of the table columns (three
for Figure 5.1). The recursion terminates if table mincol is empty, that is, there is no
valid column to further split the partition.

16

To classify the PlayTennis dataset shown in Table 5.1, we use the program:

SELECT classify(0, p.RID, d.Col, d.Val, d.YorN)
FROM PlayTennis AS p,
TABLE(dissemble(Outlook,Temp, Humidity, Wind, Play)) AS d;

Table functions and recursion are also supported in SQL 1999, but, at the best of
our knowledge, there is no simple way to express decision-tree classifiers in SQL (or
for that matter in Datalog). The fact that a concise expression for this algorithm is
now possible suggests the stream-oriented computation model of UDAs adds to the
expressive power of ATLaS.

5.2 ROLAPs

Powerful aggregate extensions based on modifications and generalization of group-by
constructs have recently been proposed by researchers, OLAP vendors, and standard
committees. New operators, such as ROLLUP and CUBE, have been included in SQL-3
and implemented in major commercial DBMSs. We will now express these extensions
in ATLaS.

The purpose of ROLLUP is to create subtotals at multiple detail levels from the most
detailed one, up to the grand total. This functionality could be expressed in basic SQL
by combining several SELECT statements with UNIONs. For instance, to roll up a sales
table along dimensions such as Time, Region, and Department, we can use the query
of Example 3.

Example 3 Using Basic SQL to express ROLLUP
SELECT Time, Region, Dept, SUM(Sales) FROM Sales GROUP BY Time, Region, Dept

UNION ALL

SELECT Time, Region, ‘all’ , SUM(Sales) FROM Sales GROUP BY Time, Region
UNION ALL

SELECT Time, ‘all’, ‘all’, SUM(Sales) FROM Sales GROUP BY Time
UNION ALL

SELECT ‘all’, ‘all’, ‘all’, SUM(Sales) FROM Sales;

The problem with the approach in Example 3, above, is that each of the four SELECT
statements could result in a new scan of the table, even though all needed subtotals
can be gathered in a single pass. Thus, a new ROLLUP construct was introduced in SQL.

No ad hoc operator is needed in ATLaS to express rollup queries. For instance, in
ATLaS the above query can be expressed succinctly as follows:

SELECT rollup(Time, Region, Dept, Sales) FROM data;

Indeed, the rollup functionality can be expressed by ATLaS in several different
ways. Algorithm 2 shows an implementation of the rollup aggregate used in the above
query, where the dataset is assumed ordered by Time, Region, and Dept.

Algorithm 2 combines UDAs and table functions to implement rollup.

We use a in-memory table to keep track of the subtotals at each rollup level j (j =
1, ..., 4, with level 4 corresponding to the grand total). The table is as follows:

TABLE memo(j Int, Time Char(20), Region Char(20), Dept Char(20), Sum Real)

17

Algorithm 2 Roll-up sales on Time, Region, Dept

1: AGGEGATE rollup(T Char(20), R Char(20), D Char(20), Sales Real): (T Char(20), R
Char(20), D Char(20), Sales Real)
2: { TABLE memo(j Int, Time Char(20), Region Char(20), Dept Char(20), Sum Real) MEMORY;
3: FUNCTION onestep(L Int, T Char(20), R Char(20), D Char(20), S Real)
(T Char(20), R Char(20), D Char(20), Sales Real)

4; { INSERT INTO RETURN

SELECT Time, Region, Dept, Sum FROM memo

WHERE L=j AND (T#Time OR R#Region OR D#Dept);

5: UPDATE memo SET Sum = Sum + (SELECT m.Sum FROM memo AS m WHERE m.j=L)
WHERE SQLCODE=0 AND j=L+1;
6: UPDATE memo

SET Time=T, Region=R, Dept=D, Sum=S
WHERE SQLCODE=10 AND j=L;
}
T: INITIALIZE: {
8: INSERT INTO memo
VALUES (1, T, R, D, Sales), (2, T, R, ‘all’, 0), (3, T, ‘all’, ‘all’, 0), (4,
‘all’, ‘all’, ‘all’, 0);

9: ITERATE: {

10: UPDATE memo SET Sum = Sum + Sales WHERE Time=T AND Region=R AND Dept=D;
11: INSERT INTO RETURN SELECT os.* FROM TABLE(onestep(l, T, R, D, Sales)) AS os
WHERE SQLCODE>0;
12: INSERT INTO RETURN SELECT os.* FROM TABLE(onestep(2, T, R, ‘all’, 0)) AS os
WHERE SQLCODE>O0;
13: INSERT INTO RETURN SELECT os.* FROM TABLE(onestep(3, T, ‘all’, ‘all’, 0)) AS os
WHERE SQLCODE=1;
}
14: TERMINATE: {
15: INSERT INTO RETURN SELECT os.* FROM TABLE(onestep(1, ‘all’, ‘all’, ‘all’, 0)) AS
os;
16: INSERT INTO RETURN SELECT os.* FROM TABLE(onestep(2, ‘all’, ‘all’, ‘all’, 0)) AS
os;
17: INSERT INTO RETURN SELECT os.* FROM TABLE(onestep(3, ‘all’, ‘all’, ‘all’, 0)) AS
os;
18: INSERT INTO RETURN SELECT Time, Region, Dept, Sum FROM memo WHERE j=4;
}
19: }
MEMORY

At the core of the algorithm, we have the four entries added to memo by the
INITIALIZE statement (line 8). The first entry has rollup level one and its subtotal
(last column) is initialized to the sales amount of the first record. The subtotals for
the other three entries are set to zero. Let memo; denote the memo tuple at level j;
then, memo; contains j — 1 occurrences of ‘all’.

The four SQL statements in the ITERATE group (i) determine the rollup levels to
which the next tuple in the input will contribute, and (ii) for each such level, return
values, and update the memo table. For instance, if the three leftmost columns of the
new input tuple match those of memo;, then the new input value is also of level one.
If this is not the case, but the two leftmost columns match those of memos, then the
new tuple is of level two, and so on. If one (none) of the columns matches, then the
new tuple is considered to be of level 3 (level 4). For incoming tuples at level 1, we
update the subtotal for memo; but return no result. For tuples of level 2 (level 3), we
return the current subtotal from memo; (and memos), reset this subtotal using the

18

Algorithm 3 Sorting and then rolling-up sales on Time, Region, Dept
1: AGGREGATE sort_and roll(T Char(20), R Char(20), D Char(20), Sales
Real)

(T Char(20), R Char(20), D Char(20), Sales Real)
: {TABLE temp(Al Char(20), A2 Char(20), A3 Char(20),V Real) MEMORY;
3: FUNCTION sort_temp(): (A1l Char(20), A2 Char(20), A3 Char(20), V
Real)
4: { INSERT INTO RETURN
SELECT * FROM temp ORDER BY A1, A2, A3;
}

5: INITIALIZE: ITERATE: {
INSERT INTO temp VALUES (T, R, D, Sales);

}

TERMINATE: {

7: INSERT INTO RETURN SELECT rollup(t.Al, t.A2, t.A3, t.V) FROM
TABLE (sort_temp()) AS t;

}
8:}

N

o

input value, and then update the subtotal at memos(memos). For tuples belonging to
level 4, we return the subtotals from memo;,j = 1,2,3 and reset them to new input
value. The TERMINATE statement returns the subtotals from memo;,j = 1,2, 3,4 where
memo4 now contains the sum of all sales.

This computation is implemented by Algorithm 2 with the help of a special variable
of SQL, SQLCODE. If no updates are made on line 10, i.e., if SQLCODE>0, we need to use
onestep() to “roll up” the subtotals from level 1 to level 2 (line 11). If the roll-up is
successful, then we need to check if further roll-ups from level 2 to level 3, and then
from level 3 to level 4 are necessary.

The table function onestep is rather simple. We first test if the level of the record
being passed is different from the entry memo; (to simplify this test some of its columns
are conveniently set to al1). If they are different, then the subtotal for stored in memo;
must be returned. This subtotal must also be passed (’rolled-up’) to the next level:
i.e., to level j 4+ 1. Finally, the subtotal at memo; must be reset from current input
record to restart aggregation on a new set of group-by columns.

In Algorithm 2, we assumed that the data is already sorted on the rollup columns.
When this is not the case, then we use the UDA sort_and roll, of Algorithm 3, which
first sort the data and then calls the UDA rollup. Furthermore, the CUBE operator is
easily implemented by a sequence of three sort-and-roll.

In Algorithm 2, sort_temp applies the standard SQL clause ORDER BY to the output
tuples. Clearly, an SQL statement that contains an ORDER BY clause is blocking, since
it requires sorting. Therefore, the table function sort_temp is also blocking since it con-
tains this statement. Thus, table functions can become blocking because they contain
SQL-statements with ORDER BY, or blocking aggregates or blocking table functions; but,
except for those situations, table functions are nonblocking.

19

5.3 References and Data Structures

In ATLaS, the types of table columns and the types of parameters to User-Defined
aggregates can be any of the following;:

e INT

e REAL

e CHAR(n)
¢ REF

The reference type, denoted by REF, is currently supported only for in-memory
tables, which are declared with the MEMORY option, as in following example:

TABLE faculty(name CHAR(20), dept CHAR(20)) MEMORY;

In-memory tables can have columns of Reference types, which are essentially points
to tuples in some other tables (or refer to themselves). For example, we can define the
following tables:

TABLE faculty(name CHAR(20), dept REF(department)) MEMORY;
TABLE department (name CHAR(20), chair REF(faculty)) MEMORY;

We can find out the name of the chair of the CS department by using the following
query:

SELECT chair->name
FROM department
WHERE name = ’CS’;

Object ID and Path Expression In ATLaS, each tuple in an in-memory table has
its unique OID (object id). In SQL statements, we treat OID of a tuple as its pseudo
column. The type of the OID column is REF (table), where table is the table the tuple
is in.

The following example demonstrates the use of OID and reference types.

TABLE tree(name char(10), father REF(tree)) MEMORY;

INSERT INTO tree
SELECT ’mary’, t.0ID
FROM tree AS t

WHERE t.name = ’tom’;

In the above example, we define a table with a column that refers to a tuple in the
same table. The subsequent INSERT statement creates a new tuple whose father is
another tuple in the table with name ’tom’. The expression t.0ID retrieves the OID
of the current tuple.

With reference types and OID and we can use path expressions to navigate through
the tables. The following query finds the name of Jane’s grandfather. Note that if t is
of reference type, then t and t->0ID are the same thing, which means father->name
is the same as father->0ID->name.

20

SELECT father->father->name
FROM tree AS t
WHERE t.name = ’jane’;

A critical application of reference types and path expression is the implementation
of in-memory data structures that are critical for the performance of many algorithms,
including the Apriori algorithm discussed next.

21

5.4 The Apriori Algorithm

Previous work on database-centric data mining applications has shown that these are
not supported well by current O-R systems, and there is no clear understanding on
which SQL extensions are needed to solve the problem. In elucidating this sorry state
of affairs the award winning paper [3] also established the Apriori algorithm as the
litmus test that any aspiring solution must satisfy. The AXL system [6] failed this acid
test—also all the applications presented in Section 4 and some of those discussed in
Section 3 could not be supported in AXL. These setbacks helped us identifying impor-
tant features that were missing from AXL and various aspects of its implementation
architecture and query optimizer that required major improvements. The new features
added to ATLaS include support for (i) table functions coded in SQL, (ii) in-memory
tables, (iii) OIDs used to reference tuples and implement (in-memory) data structures,
and (iv) many changes in the optimizer to improve the execution speed of programs.
These improvements have produced the ATLaS system that supports efficiently a wide
spectrum of data-intensive applications, including the Apriori algorithm.

Problem Statement. The problem of mining frequent itemsets over basket data
was introduced by R. Agrawal et al. in [1]. Let I = {i1,...,in} be a set of literals,
called items. Let D be a set of transactions, where each transaction T is a set of items.
We say that a transaction T' contains itemset X, if T D X. Itemset X has support
s in the transaction set D if no less than s transactions in D contain X. Given a set
of transactions D, the problem of mining frequent itemsets is to generate all itemsets
that have support greater than the user-specified minimum support (called MinSup).

Data Organization. Let a transaction dataset be represented by a stream of items,
and each item is encoded with an integer ¢, ¢ > 0. Adjacent transactions in the stream
are separated by a special symbol, 0. Within each transaction, items are sorted by their
integer value. For example, the following stream represents a dataset of 5 transactions:

0,2,3,4,0,1,2,3,4,0,3,4,5,0,1,2,5,0,2,4,5 (5.1)

Thus, we assume that this stream is drawn from a database table: baskets(item INT).

However, our algorithm does not depend on the existence of such a table, since it
will work for data taken from a stream, a view, or generated by a query.

We use a prefix tree, or a trie, to store frequent itemsets. An example trie is shown
in Figure 5.2(a). Each node in the trie represents a frequent itemset that contains all
the items on the path from the root to that node. For instance, the only frequent 3-
itemset in Figure 5.2(a) is (2,3,4). In ATLaS, the trie is represented by the in-memory
table trie, where each record contains an item, as well as a pointer to its parent node,
which is another record in the trie table: trie(itno INT, father REF(trie)).

The trie grows level-by-level. To find frequent (k + 1)-itemsets, we first generate
candidates based on the k-itemsets. The candidates are stored in an in-memory table:
cands(cit Int, trieref REF(trie), freqcount Int).

Each record in cands contains an item, cit, and a reference, trieref, which points
to a leaf node of the trie. If the leaf node is on level k, then cit, together with the
frequent itemset referenced by trieref, represents a candidate itemset of k + 1 items.
The support of the candidate, freqcount, is updated in the algorithm as we count its

22

Algorithm 4 Main ATLaS Program for Apriori
1: TABLE baskets(item Int) SOURCE(marketdata);
2: TABLE trie(item Int, father REF(trie)) INDEX(father) MEMORY;
3: TABLE cands(item Int, trieref REF(trie), freqcount Int)
INDEX(cit,trieref) MEMORY;
4: TABLE fitems(item Int) INDEX(item);
/* generat frequent one-itemsets */
5: INSERT INTO fitems
SELECT item FROM baskets WHERE item > 0
GROUP BY item HAVING count(*) > MinSup;
/¥ intialize the trie to contain frequent one-itemsets */
6: INSERT INTO trie SELECT item, null FROM fitems;
/* self-join frequent 1-itemsets to get candidate 2-itemsets */
7: INSERT INTO cands SELECT t1.itno, t2.0ID, O FROM trie AS t1, trie AS
t2 WHERE tl.itno > t2.itno;
/* Generate (k+1)-itemsets from k-itemsets. Start with k=2 */
8: SELECT countset(item, 2, MinSup, cands) FROM baskets;

occurrence. For efficiency purposes, both trie and cands are indexed. More specifically,
trie is indexed on father, and cands is indexed on the pair (cit,trieref).

The Algorithm. The ATLaS implementation of Apriori is shown in Algorithm 4.
First, we scan the dataset to find out frequent 1-itemsets and insert them into the trie.
Next, we self-join the frequent 1-itemsets to generate candidate 2-itemsets. The WHERE
condition on line 7 guarantees that each frequent itemset is uniquely represented in
the trie — a child node is always labelled with a larger item than its parent. After the
join operation (assuming we are mining the sample dataset in (5.1) with a threshold
MinSup = 2), the contents of table trie and cand can be depicted by Figure 5.2(b).
Finally, we invoke UDA countset to extend the trie to higher levels.

The implementation of countset is shown in Algorithm 5, which recursively extends
the trie level-by-level until no more frequent itemsets can be found.

null null
1lst Level 1 2 3 4 5
/ /T\ T T lst Level 1 2 3 4
2nd Level 2 /‘3 4 s a 5 » * ‘ A
3rd Level 4 cands é ?; 4 5‘ :;) 4 5 4'1 ‘5 é
(a) Trie: each node represents a frequent item- (b) Trie and candidate itemsets on the 2nd-level

set

Figure 5.2: Representing the trie in a relational table with the reference data type

The INITIALIZE and ITERATE routine of UDA countset is responsible for counting
the occurrences of each candidate. As we scan through each item in a transaction,

23

Algorithm 5 countset
1: AGGREGATE countset (bitem Int, J Int, MinSup Int, cands TABLE)
2: { TABLE previous(marked REF(trie), Level Int) INDEX(marked) MEMORY;
3: TABLE nextcands(cit Int, trieref REF(trie), freqcount Int)
INDEX (trieref) MEMORY;
4: INITIALIZE: ITERATE: {
/* Intialize previous for a new transaction if bitem=0. */
DELETE FROM previous WHERE bitem=0;
INSERT INTO previous VALUES (null, 0) WHERE bitem=0;
/* Store supported frequent itemsets in previous */
7: INSERT INTO previous
SELECT t.0ID, p.Level+l FROM previous AS p, trie AS t
WHERE t.itno=bitem AND t.father=p.marked AND p.Level<J-1;
/* Count candidates that appear in the transaction */
8: UPDATE cands SET freqcount=freqcount+1
WHERE bitem > O AND c.cit=bitem
AND 0ID = (SELECT c.0ID FROM previous AS p, cands AS c
WHERE p.Level=J-1 AND c.trieref=p.marked);

9: }
10: TERMINATE: {
/* Derive trie on level J and candidates on level J+1 */
11: INSERT INTO nextcands
SELECT nextlevel (cit, trieref) FROM cands WHERE freqcount
> MinSup GROUP BY trieref;
/* Eliminate candidates by the anti-monotonicity */

12: INSERT INTO subitems VALUES(null,O);
13: SELECT checkset(cit, trieref), antimon(cit, trieref, J) FROM
nextcands;
/* Ascend to level J+1 if cands not empty */
14: SELECT countset (b.item, J+1, MinSup, nextcands)

FROM (SELECT count(*) AS size FROM nextcands) AS c, baskets AS
b WHERE c.size >0;

}
15:}

we traverse the trie and incrementally find all the itemsets that are supported by
the transaction, and we store the references to these itemsets in the previous table
(line 7), which is initialized to contain nothing but the root node at the beginning
of each transaction. On line 8, the count of the candidate is increased by 1 if the
candidate itemset is supported by the transaction. We will now continue with our
example starting from the trie in Figure 5.2(b): after the first transaction, (2, 3,4), is
processed by countset, table previous contains 4 nodes, namely the root, and nodes
2,3, and 4; also, three candidate itemsets, (2,3),(2,4), and (3,4), have their counts
updated.

The TERMINATE routine of countset is responsible for extending the trie to a new
level. On line 11, we call nextlevel to extend the trie to level J by adding candidates
with a support no less than MinSup to the trie. The UDA nextlevel also generates

24

candidates on level J + 1. Then, we apply the anti-monotonic property to filter the
candidates. This is achieved by calling checkset and antimon on line 12. Finally, on
line 14, we recursively invoke countset to extend the trie to level J + 1 unless no new
candidates are found.

Algorithm 6 Supporting UDAs for Apriori

1:

11:

12:

13:

14:

15:
16:

17:

18:

TABLE subitems(toid REF(trie), level Int) MEMORY;
/* extend the trie and return candidates on the new level */

: AGGREGATE nextlevel(item Int, ptrie REF(trie)): (Int, REF(trie),

Int)

: { TABLE previous(poid REF(trie)) MEMORY;

INITIALIZE: ITERATE: {

INSERT INTO trie VALUES(item, ptrie);

/* join with previously inserted itemsets and return them as next-level candi-
dates */

INSERT INTO RETURN SELECT item, previous.poid, O FROM previous;

/* appending the newly-added to the previous table */

INSERT INTO previous

SELECT trie.0ID FROM trie WHERE trie.itno=item AND

trie.father=ptrie;

}

/¥ for each (J+1)-itemset, find its frequent subsets of size J */

: AGGREGATE checkset (citem Int, cref REF(trie))
10:

{ INITIALIZE: ITERATE: {
/* call checkset recursively */
SELECT checkset(f.itno, f.father) FROM trie AS f WHERE
cref<>null AND f.0ID=cref;
/* as we exit the recursion we expand subitems */
INSERT INTO subitems
SELECT t.0ID, s.level+l FROM subitems AS s, trie AS t
WHERE t.itno=citem AND t.father=s.toid;

}
}
/¥ pruning using the anti-monotonic property */
AGGREGATE antimon(it Int, aref REF(trie), J Int)
{INITIALIZE: ITERATE: {
DELETE FROM cands
WHERE cands.cit=it AND trieref=aref
AND J+1 > (SELECT count(*) FROM subitems WHERE
subitems.level=J);
DELETE FROM subitems WHERE toid <> null;
}

}

The UDA nextlevel adds each qualified candidate onto the trie (line 5 in Algo-

rithm 6). It also generates the next-level candidates by computing the self-join of the
newly added itemsets; this UDA is called with a GROUP BY clause to exclude candidates

25

null null

B e

1lst Level 51st Level

\
>

o ST

2nd Level 3 4 5 2nd Level 3 4 5
A P
cands 4 5 5 cands 4 5
(a) After invoking UDA nextlevel (b) After invoking UDA checkset and
antimon

Figure 5.3: Candidates generation and pruning

that do not share the same parent!. The join operation is carried out through the
use of a temporary table called previous, which stores all the itemsets that appear
ahead of the current itemset, and they are joined with the current itemset to generate
candidates on the new level. Figure 5.3(a) shows the result after nextlevel is applied:
qualified candidates in Figure 5.2(b) become a new level of nodes in the trie, and a
new set of candidates are derived by self-joining the itemsets on Level 2.

UDA checkset and antimon together implement the anti-monotonic property for
pruning. For each candidate itemset on level J + 1, checkset traverses the trie to
find all of its sub-itemsets. According to the anti-monotonic property, a necessary
condition for a (J + 1)-itemset to be a frequent itemset is that each of its J + 1 subsets
is a frequent itemset. Thus, antimon eliminates those candidates that have fewer than
J + 1 frequent itemsets of size J. Figure 5.3(b) shows the result after antimon has
eliminated candidate (2,3, 5) from Figure 5.3(a): (2,3,5) cannot be a frequent itemset
because one of its subset, (3,5), is not frequent.

As shown in Figure 5.2(a), the process on the sample dataset terminates at level 3.
At that point, table trie contain all the results, i.e., the frequent itemsets.

1A candidate resulting from self-joining itemsets that do not share the same parent is already
included in the join result of itemsets that share the same parent, or will be eliminated by the anti-
monotonic property.

26

5

Chapter 6

External Functions

ATLaS supports both scalar external functions and table external functions.
(For latest update, please refer to our website.)

6.1 Scalar Functions

To declare an external function to be dynamically loaded into ATLaS, we use the
following syntax:

external int ginif(a int) in ’gini.so’;

The above statement declares a UDF ginif which takes one integer-type parameter
and returns an integer result. This function is supported by a shared library, ’gini.so’.
We can use C or any other language to create functions in shared libraries. On a
UNIX system, the following command compiles C source code to dynamical libraries.

gcc -shared -o gini.so -fPIC gini.c
Once defined, the UDF can be used in ATLaS. For instance:
select gini(a) from test;

In order to dynamically load the library, the OS must be able to find it. In UNIX,
the OS searchs for the library in all the paths specified by the environment variable
LD_LIBRARY _PATH.

6.2 Table Functions

In much the same way, we can use external UDF as table functions.

For instance, we want to stream through the first K Fibonacci numbers. It is not
difficult to write a C function to generate the Fibonacci numbers. The following ATLaS
program demonstrates how to use such an external table function.

27

external table (i int, f int) fib(k int) in ’tabf.so’;

select t.i, t.f
from table (fib(10)) as t;

In order to declare an external table function, we must use TABLE as the return
type. The above declaration indicates ’'fib’ is an external function found in shared li-
brary ’tabf.so’, and ’fib’ returns a stream of tubples (i,f), where f is the i-th Fibonacci
number. Then, in the following query, we stream through the first 10 Fibonacci num-
bers by calling ’table (fib(10))’.

How do we implement a table function in C? Unlike stateless scalar functions, table
functions must keep their internal state between calls. More specifically, the function
must be able to: i) determine the first call from subsequent calls; ii) tell the caller
whether a tuple is successfully returned; iii) use a mechanism to return tuples to the
caller. As an example, the following code implements function ’fib’:

#include <db.h>

struct result {
int a;
int b;

};

int fib(int first_entry, struct result *tuple, int k)
{

static int count;

static int last;

static int next;

if (first_entry == 1) {
count = 0;

next=1;
last=0;

}

if (count++ <k) {
tuple->a = count;
tuple->b = last;

last = next;
next = next+tuple->b;
return 0O;
} else {
return DB_NOTFOUND;

In addition to the arguments (here is 'k’) passed to the table function, we have 2
extra arguments: i) first_entry, if first_entry=1 then it is the first call; ii) tuple, which

28

is a pointer to a structure where results are to be stored. External table functions
always return an integer value, 0 if successful, DB_.NOTFOUND otherwise.

A possible use of table functions is to scan file system data, and return results to
the database system after filtering. Our test indicates that on a linux system, external
table functions accessing file system data is almost 100 times faster than accessing the
same data in the Berkeley DB format.

6.3 Built-in Aggregates and Functions

ATLaS supports the standard builtin aggregates: min(), max(), sum(), avg(), and
count().
ATLaS supports the following builtin functions: (they are being added constantly.)

e srand(INT) : INT
The srand() function sets its argument as the seed for a new sequence of pseudo-
random integers to be returned by rand(). These sequences are repeatable by
calling srand() with the same seed value. srand() always returns 0.

e rand() : REAL
The rand() function returns a pseudo-random real between 0 and 1. The following
code set 10 as a random seed, and displays two random values.

VALUES (srand (10)) ;
VALUES(rand (), rand());

e sqrt(REAL) : REAL
The sqrt(x) function returns the non-negative square root of x.

e timeofday() : CHAR(20)
The gettimeofday function gets the system’s notion of the current time. The
current time is expressed in elapsed seconds and microseconds since 00:00 Uni-
versal Coordinated Time, January 1, 1970. It returns a string in the form of x’y”,
where x is the seconds and y is the microseconds. This function is maily used to
measure the performance of ATLaS queries, as in the following example:

INSERT INTO stdout VALUES(timeofday());
. some ATLaS queries ...

INSERT INTO stdout VALUES(timeofday());

29

Bibliography

[1] R. Agrawal, R. Srikant. “Fast Algorithms for Mining Association Rules”. In
VLDB’9.

[2] J. M. Hellerstein, P. J. Haas, H. J. Wang. “Online Aggregation”. SIGMOD,
1997.

[3] S.Sarawagi, S. Thomas, R. Agrawal, “Integrating Association Rule Mining with
Relational Database Systems: Alternatives and Implications”. In SIGMOD,
1998.

[4] J. C. Shafer, R. Agrawal, M. Mehta, “SPRINT: A Scalable Parallel Classifier
for Data Mining,” In VLDB 1996.

[5] Sleepycat Software, “The Berkeley Database (Berkeley DB)”,
http://www.sleepycat.com.

[6] H. Wang and C. Zaniolo: Using SQL to Build New Aggregates and Extenders
for Object-Relational Systems. VLDB 2000.

[7] Carlo Zaniolo, Stefano Ceri, Christos Faloutsos, Richard T. Snodgrass, V. S.
Subrahmanian, Roberto Zicari: Advanced Database Systems. Morgan Kauf-
mann 1997, ISBN 1-55860-443-X.

30

